A270348 Denominators of r-Egyptian fraction expansion for sqrt(1/3), where r = (1,1/2,1/4,1/8,...)
2, 7, 43, 1161, 796510, 1101781866330, 648667164391834988511313, 521313118065995695198529265268104396429334449023, 177042477384698216444912803612486097958997328262217304760270340328784709181787835108737458616981
Offset: 1
Examples
sqrt(1/3) = 1/2 + 1/(2*7) + 1/(4*43) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..11
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Crossrefs
Cf. A269993.
Programs
-
Mathematica
r[k_] := 2/2^k; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Sqrt[1/3]; Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 2/2^k; f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); a(k, x=sqrt(1/3)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 18 2016
Comments