A270353 Denominators of r-Egyptian fraction expansion for Pi - 3, where r = (1, 1/2, 1/4, 1/8, ...)
8, 31, 540, 189864, 22502468823, 547694780221174920178, 287920070745319667821031437298831171428290, 271667810016366767427285213650617821610883263237085072498040538105208873088855853524
Offset: 1
Examples
Pi - 3 = 1/8 + 1/(2*31) + 1/(4*540) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..11
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Crossrefs
Cf. A269993.
Programs
-
Mathematica
r[k_] := 2/2^k; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Pi - 3; Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 2/2^k; f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); a(k, x=Pi-3) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 18 2016
Comments