A270382 Denominators of r-Egyptian fraction expansion for (1/2)^(1/3), where r = (1,1/4,1/9,1/16,...).
2, 1, 3, 10, 97, 24851, 510157381, 695243618523592916, 2521217027896573870788274798987969315, 200759268273854851798439056384882383919258596635924900200845873520031055851
Offset: 1
Examples
(1/2)^(1/3) = 1/2 + 1/(4*1) + 1/(9*3) + 1/(16*10) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..13
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Programs
-
Mathematica
r[k_] := 1/k^2; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = (1/2)^(1/3); Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 1/k^2; f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); a(k, x=(1/2)^(1/3)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 22 2016
Comments