A270389 Numbers that are equal to the sum of the number of divisors of their k first powers, for some k.
1, 2, 5, 64, 203, 505, 524, 649, 818, 1295, 2469, 2869, 4355, 5048, 6083, 10415, 14909, 15021, 22329, 27433, 29189, 29369, 35719, 38023, 44099, 48229, 56372, 85329, 85343, 89270
Offset: 1
Keywords
Examples
d(1^1) = 1; d(2^1) = 2; d(5^1) + d(5^2) = 2 + 3 = 5; d(64^1) + d(64^2) + d(64^3) + d(64^4) = 7 + 13 + 19 + 25 = 64; d(203^1) + d(203^2) + d(203^3)+ d(203^4)+ d(203^5)+ d(203^6)+ d(203^7) = 4 + 9 + 16 + 25 + 36 + 49 + 64 = 203.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..200
- Paolo P. Lava, First 30 terms with k value
Programs
-
Maple
with(numtheory): P:=proc(q) local a,k,n; for n from 1 to q do a:=0; k:=0; while a
-
Mathematica
Select[Range[10^4], Function[n, IntegerQ@ SelectFirst[Range@ 25, Total@ Map[DivisorSigma[0, #] &, n^Range[#]] == n &]]] (* Michael De Vlieger, Mar 17 2016, Version 10 *)
-
PARI
is(n)=my(e=factor(n)[,2],k,t); while(t
Charles R Greathouse IV, Mar 31 2016
Formula
Solutions of the equation n = Sum_{i=1..k}{d(n^k)}.