cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270389 Numbers that are equal to the sum of the number of divisors of their k first powers, for some k.

Original entry on oeis.org

1, 2, 5, 64, 203, 505, 524, 649, 818, 1295, 2469, 2869, 4355, 5048, 6083, 10415, 14909, 15021, 22329, 27433, 29189, 29369, 35719, 38023, 44099, 48229, 56372, 85329, 85343, 89270
Offset: 1

Views

Author

Paolo P. Lava, Mar 16 2016

Keywords

Examples

			d(1^1) = 1;
d(2^1) = 2;
d(5^1) + d(5^2) = 2 + 3 = 5;
d(64^1) + d(64^2) + d(64^3) + d(64^4) = 7 + 13 + 19 + 25 = 64;
d(203^1) + d(203^2) + d(203^3)+ d(203^4)+ d(203^5)+ d(203^6)+ d(203^7) = 4 + 9 + 16 + 25 + 36 + 49 + 64 = 203.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n;
    for n from 1 to q do a:=0; k:=0;
    while a
    				
  • Mathematica
    Select[Range[10^4], Function[n, IntegerQ@ SelectFirst[Range@ 25, Total@ Map[DivisorSigma[0, #] &, n^Range[#]] == n &]]] (* Michael De Vlieger, Mar 17 2016, Version 10 *)
  • PARI
    is(n)=my(e=factor(n)[,2],k,t); while(tCharles R Greathouse IV, Mar 31 2016

Formula

Solutions of the equation n = Sum_{i=1..k}{d(n^k)}.