A270713 Numbers that are equal to the product of the number of divisors of their first k powers, for some k.
1, 2, 225, 4050, 66528, 113400, 120960, 92802153185280, 726046074908612178739200000000000, 3524292573661555639437312000000000000, 2308850758786565168980497090478080000000000, 142039354014714204088514497565910023710398021722450165760000000000000000
Offset: 1
Keywords
Examples
d(4050) * d(4050^2) = 30 * 135 = 4050; d(66528) * d(66528^2) = 96 * 693 = 66528.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..14
Programs
-
Maple
with(numtheory): P:=proc(q) local a,k,n; for n from 1 to q do a:=tau(n); k:=1; while a
-
Mathematica
Select[Insert[Complement[Range@ #, Prime@ Range@ PrimePi@ #] &[2 10^5], 2, 2], Function[k, AnyTrue[Range@ 3, Product[DivisorSigma[0, k^i], {i, #}] == k &]]] (* Michael De Vlieger, Mar 25 2016 *)
-
PARI
isok(m) = my(k = 1, prd = 1); while (prd < m, prd *= numdiv(m^k); k++); prd == m; \\ Michel Marcus, Apr 08 2016, Jun 12 2025
Extensions
a(8)-a(10) from Hiroaki Yamanouchi, Apr 07 2016
a(11)-a(14) from Max Alekseyev, Jun 10 2025
Comments