cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270407 Triangle read by rows: T(n,g) is the number of rooted maps with n edges and 3 faces on an orientable surface of genus g.

Original entry on oeis.org

2, 22, 164, 70, 1030, 1720, 5868, 24164, 6468, 31388, 256116, 258972, 160648, 2278660, 5554188, 1169740, 795846, 17970784, 85421118, 66449432, 3845020, 129726760, 1059255456, 1955808460, 351683046, 18211380, 875029804, 11270290416, 40121261136, 26225260226
Offset: 2

Views

Author

Gheorghe Coserea, Mar 16 2016

Keywords

Comments

Row n contains floor(n/2) terms.

Examples

			Triangle starts:
n\g    [0]          [1]          [2]          [3]          [4]
[2]    2;
[3]    22;
[4]    164,         70;
[5]    1030,        1720;
[6]    5868,        24164,       6468;
[7]    31388,       256116,      258972;
[8]    160648,      2278660,     5554188,     1169740;
[9]    795846,      17970784,    85421118,    66449432;
[10]   3845020,     129726760,   1059255456,  1955808460,  351683046;
[11]   18211380,    875029804,   11270290416, 40121261136, 26225260226;
[12]   ...
		

Crossrefs

Columns k=0-1 give: A000184, A006296.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    T[n_, g_] := Q[n, 3, g];
    Table[T[n, g], {n, 2, 11}, {g, 0, Quotient[n, 2]-1}] // Flatten (* Jean-François Alcover, Oct 18 2018 *)
  • PARI
    N = 11; F = 3; gmax(n) = n\2;
    Q = matrix(N + 1, N + 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, length(Q)-1, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x + O('x^(F+1)));
    concat(vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F))))