A270407 Triangle read by rows: T(n,g) is the number of rooted maps with n edges and 3 faces on an orientable surface of genus g.
2, 22, 164, 70, 1030, 1720, 5868, 24164, 6468, 31388, 256116, 258972, 160648, 2278660, 5554188, 1169740, 795846, 17970784, 85421118, 66449432, 3845020, 129726760, 1059255456, 1955808460, 351683046, 18211380, 875029804, 11270290416, 40121261136, 26225260226
Offset: 2
Examples
Triangle starts: n\g [0] [1] [2] [3] [4] [2] 2; [3] 22; [4] 164, 70; [5] 1030, 1720; [6] 5868, 24164, 6468; [7] 31388, 256116, 258972; [8] 160648, 2278660, 5554188, 1169740; [9] 795846, 17970784, 85421118, 66449432; [10] 3845020, 129726760, 1059255456, 1955808460, 351683046; [11] 18211380, 875029804, 11270290416, 40121261136, 26225260226; [12] ...
Links
- Gheorghe Coserea, Rows n = 2..102, flattened
- Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
Programs
-
Mathematica
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0; Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); T[n_, g_] := Q[n, 3, g]; Table[T[n, g], {n, 2, 11}, {g, 0, Quotient[n, 2]-1}] // Flatten (* Jean-François Alcover, Oct 18 2018 *)
-
PARI
N = 11; F = 3; gmax(n) = n\2; Q = matrix(N + 1, N + 1); Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; Qset(n, g, v) = { Q[n+1, g+1] = v }; Quadric({x=1}) = { Qset(0, 0, x); for (n = 1, length(Q)-1, for (g = 0, gmax(n), my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g), t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1), t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g, (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i)))); Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); }; Quadric('x + O('x^(F+1))); concat(vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F))))
Comments