A269925
Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 5.
Original entry on oeis.org
59520825, 4304016990, 4304016990, 158959754226, 354949166565, 158959754226, 4034735959800, 14805457339920, 14805457339920, 4034735959800, 79553497760100, 420797306522502, 691650582088536, 420797306522502, 79553497760100, 1302772718028600, 9220982517965400, 21853758736216200, 21853758736216200, 9220982517965400, 1302772718028600
Offset: 10
Triangle starts:
n\f [1] [2] [3] [4]
[10] 59520825;
[11] 4304016990, 4304016990;
[12] 15895975422, 354949166565, 158959754226;
[13] 4034735959800, 14805457339920, 14805457339920, 4034735959800;
[14] ...
Cf.
A035309,
A269921,
A269922,
A269923,
A269924,
A270406,
A270407,
A270408,
A270409,
A270410,
A270411,
A270412.
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
Table[Q[n, f, 5], {n, 10, 15}, {f, 1, n-9}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
-
N = 15; G = 5; gmax(n) = min(n\2, G);
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x);
concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))
A287047
a(n) is the number of rooted maps with n edges and 7 faces on an orientable surface of genus 1.
Original entry on oeis.org
60060, 3944928, 129726760, 2908358552, 50534154408, 729734918432, 9145847808784, 102432266545800, 1046677747672360, 9908748651241088, 87930943305742512, 738178726378902064, 5905479331377981200, 45289976937922983360, 334600965220354244896, 2391127223524518889064, 16585285393291515557928
Offset: 8
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 7, 1];
Table[a[n], {n, 8, 24}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A287047_ser(N) = {
my(y = A000108_ser(N+1));
-4*y*(y-1)^8*(184142*y^7 + 1083793*y^6 - 1540136*y^5 - 1481152*y^4 + 2626176*y^3 - 737232*y^2 - 184896*y + 64320)/(y-2)^23;
};
Vec(A287047_ser(17))
A288087
a(n) is the number of rooted maps with n edges and 7 faces on an orientable surface of genus 2.
Original entry on oeis.org
31039008, 2583699888, 106853266632, 2979641557620, 63648856688592, 1117259292848016, 16842445235560944, 224686278407291148, 2710382626755160416, 30044423965980553536, 309859885439753598768, 3002524783711124880936, 27551689577648333614176, 240961534103705377359840, 2019318707410947848445792
Offset: 10
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 7, 2];
Table[a[n], {n, 10, 24}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288087_ser(N) = {
my(y = A000108_ser(N+1));
-12*y*(y-1)^10*(20697615*y^9 + 275716321*y^8 + 211910021*y^7 - 1514443109*y^6 + 601694224*y^5 + 1328709592*y^4 - 1136750032*y^3 + 153705072*y^2 + 76788992*y - 15442112)/(y-2)^29;
};
Vec(A288087_ser(15))
A270412
Triangle read by rows: T(n,g) is the number of rooted maps with n edges and 8 faces on an orientable surface of genus g.
Original entry on oeis.org
429, 26333, 795846, 291720, 16322085, 22764165, 259477218, 875029804, 205633428, 3435601554, 22620890127, 19678611645, 39599553708, 448035881592, 925572602058, 174437377400, 409230997461, 7302676928666, 29079129795702, 19925913354061
Offset: 7
Triangle starts:
n\g [0] [1] [2] [3]
[7] 429;
[8] 26333;
[9] 795846, 291720;
[10] 16322085, 22764165;
[11] 259477218, 875029804, 205633428;
[12] 3435601554, 22620890127, 19678611645;
[13] 39599553708, 448035881592, 925572602058, 174437377400;
[14] 409230997461, 7302676928666, 29079129795702, 19925913354061;
[15] ...
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
T[n_, g_] := Q[n, 8, g];
Table[T[n, g], {n, 7, 14}, {g, 0, Quotient[n-5, 2]-1}] // Flatten (* Jean-François Alcover, Oct 18 2018 *)
-
N = 14; F = 8; gmax(n) = n\2;
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x + O('x^(F+1)));
v = vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F)));
concat(v)
Showing 1-4 of 4 results.
Comments