A270415 Numbers n such that sigma(n-1) and sigma(n) - 1 are both primes.
3, 5, 10, 17, 26, 65, 65537, 146690, 703922, 1481090, 1885130, 2036330, 2211170, 2430482, 2505890, 5470922, 9840770, 11607650, 17783090, 24137570, 74425130, 76615010, 77563250, 133379402, 138697730, 138980522, 142396490, 155575730, 177715562, 181899170
Offset: 1
Keywords
Examples
17 is in the sequence because sigma(17-1) = sigma(16) = 31 and sigma(10) - 1 = 18 - 1 = 17 (both primes).
Programs
-
Magma
[n: n in [2..10000000] | IsPrime(SumOfDivisors(n-1)) and IsPrime(SumOfDivisors(n)-1)];
-
Mathematica
Select[Range[10^7], And[PrimeQ@ DivisorSigma[1, # - 1], PrimeQ[DivisorSigma[1, #] - 1]] &] (* Michael De Vlieger, Mar 17 2016 *)
-
PARI
isok(n) = isprime(sigma(n-1)) && isprime(sigma(n)-1); \\ Michel Marcus, Mar 17 2016
Comments