A270440 Least k such that binomial(k, 2) >= binomial(2*n, n).
2, 3, 4, 7, 13, 23, 44, 84, 161, 313, 609, 1189, 2327, 4562, 8958, 17614, 34673, 68318, 134724, 265878, 525066, 1037554, 2051390, 4057939, 8030892, 15900354, 31493446, 62400953, 123682583, 245223436, 486342641, 964809156, 1914483817, 3799849586, 7543612064, 14979070587, 29749371096, 59095356237, 117410567231
Offset: 0
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
Table[SelectFirst[Range[10^7], Binomial[#, 2] >= Binomial[2 n, n] &], {n, 0, 22}] (* Michael De Vlieger, Mar 17 2016, Version 10 *)
-
PARI
a(n) = {my(c = binomial(2*n, n)); my(k = 0); while (binomial(k,2) < c, k++); k;} \\ Michel Marcus, Mar 17 2016
-
Python
from _future_ import division from gmpy2 import iroot A270440_list, b = [], 8 for n in range(1001): q, r = iroot(b+1,2) A270440_list.append(int((q+1)//2 + (0 if r else 1))) b = b*2*(2*n+1)//(n+1) # Chai Wah Wu, Mar 22 2016
-
Sage
def k2_2nn(M): # Produces the first M terms. K, n, center, k, triangle = [], 0, 1, 1, 0 while len(K)
Formula
Conjecture: a(n) ~ 2^(n + 1/2) / (Pi*n)^(1/4). - Vaclav Kotesovec, Mar 23 2016
a(n) = ceiling(((8*binomial(2*n,n)+1)^(1/2)+1)/2). The above conjecture is true asymptotically. Using Stirling's formula for the approximation of n!, we get binomial(2*n,n) ~ 2^(2*n)/(Pi*n)^(1/2) and inserting this in the formula for a(n) results in the above approximation for a(n). - Chai Wah Wu, Mar 23 2016
Comments