cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270440 Least k such that binomial(k, 2) >= binomial(2*n, n).

Original entry on oeis.org

2, 3, 4, 7, 13, 23, 44, 84, 161, 313, 609, 1189, 2327, 4562, 8958, 17614, 34673, 68318, 134724, 265878, 525066, 1037554, 2051390, 4057939, 8030892, 15900354, 31493446, 62400953, 123682583, 245223436, 486342641, 964809156, 1914483817, 3799849586, 7543612064, 14979070587, 29749371096, 59095356237, 117410567231
Offset: 0

Views

Author

Danny Rorabaugh, Mar 17 2016

Keywords

Comments

Open question: Does binomial(a(n), 2) = binomial(2*n, n) for any n > 2? An affirmative answer would settle whether there exists an odd term greater than 3 in A003016.
binomial(a(n),2) > binomial(2*n,n) for 2 < n <= 800000. - Chai Wah Wu, Mar 22 2016

Crossrefs

Programs

  • Mathematica
    Table[SelectFirst[Range[10^7], Binomial[#, 2] >= Binomial[2 n, n] &], {n, 0, 22}] (* Michael De Vlieger, Mar 17 2016, Version 10 *)
  • PARI
    a(n) = {my(c = binomial(2*n, n)); my(k = 0); while (binomial(k,2) < c, k++); k;} \\ Michel Marcus, Mar 17 2016
    
  • Python
    from _future_ import division
    from gmpy2 import iroot
    A270440_list, b = [], 8
    for n in range(1001):
        q, r = iroot(b+1,2)
        A270440_list.append(int((q+1)//2 + (0 if r else 1)))
        b = b*2*(2*n+1)//(n+1) # Chai Wah Wu, Mar 22 2016
  • Sage
    def k2_2nn(M): # Produces the first M terms.
        K, n, center, k, triangle = [], 0, 1, 1, 0
        while len(K)
    				

Formula

Conjecture: a(n) ~ 2^(n + 1/2) / (Pi*n)^(1/4). - Vaclav Kotesovec, Mar 23 2016
a(n) = ceiling(((8*binomial(2*n,n)+1)^(1/2)+1)/2). The above conjecture is true asymptotically. Using Stirling's formula for the approximation of n!, we get binomial(2*n,n) ~ 2^(2*n)/(Pi*n)^(1/2) and inserting this in the formula for a(n) results in the above approximation for a(n). - Chai Wah Wu, Mar 23 2016