cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270447 Binomial transform(2) of Catalan numbers.

Original entry on oeis.org

1, 3, 11, 43, 174, 721, 3044, 13059, 56837, 250690, 1119612, 5059561, 23119628, 106753404, 497762380, 2342096579, 11113027686, 53138757319, 255892224332, 1240217043450, 6046131132030, 29631889507380, 145923474439800, 721733515299225, 3583733352377724
Offset: 0

Views

Author

Vladimir Kruchinin, Mar 17 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k,k]/(k+1) * Binomial[2*n-k,n], {k,0,n}], {n,0,25}] (* Vaclav Kotesovec, Mar 17 2016 *)
    a[n_] := ((2 n + 1) Binomial[2 n, n] (1 - Hypergeometric2F1[-1/2, -n - 1, -2 n - 1, 4]))/(2 (n + 1));
    Table[a[n], {n, 0, 24}] (* Peter Luschny, May 30 2022 *)
  • Maxima
    a(n):=sum((binomial(2*k,k)*binomial(2*n-k,n))/(k+1),k,0,n);
    
  • PARI
    a(n) = sum(i=0, n, (binomial(2*i, i)*binomial(2*n-i, n))/(i+1)); \\ Altug Alkan, Mar 17 2016

Formula

a(n) = Sum_{k=0..n} (T(n,k)*C(k)), where C(k) is Catalan numbers (A000108), T(n,k) - triangle of A092392.
a(n) = Sum_{k=0..n} ((binomial(2*k,k)/(k+1)*binomial(2*n-k,n))).
G.f.: C(C(x))*(1-C(x))^2/(((1-C(x))^2)-x)/x, where C(x)=(1-sqrt(1-4*x))/2.
Recurrence: 3*(n-1)*n*(n+1)*(2*n - 3)*a(n) = 16*(n-1)*n*(5*n^2 - 10*n + 3)*a(n-1) - 16*(n-1)*(2*n - 1)*(11*n^2 - 33*n + 24)*a(n-2) + 8*(2*n - 3)*(2*n - 1)*(4*n - 9)*(4*n - 7)*a(n-3). - Vaclav Kotesovec, Mar 17 2016
a(n) ~ 2^(4*n + 1/2) / (sqrt(Pi) * 3^(n - 1/2) * n^(3/2)). - Vaclav Kotesovec, Mar 17 2016
a(n) = [x^n] (1 - sqrt(1 - 4*x))/(2*x*(1 - x)^(n+1)). - Ilya Gutkovskiy, Nov 01 2017