cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270474 Integers k such that A256832(k) is not divisible by k*(k+1)/2.

Original entry on oeis.org

2, 3, 10, 11, 18, 19, 42, 43, 66, 67, 82, 83, 106, 107, 130, 131, 138, 139, 162, 163, 210, 211, 282, 283, 306, 307, 330, 331, 346, 347, 466, 467, 490, 491, 498, 499, 522, 523, 546, 547, 562, 563, 570, 571, 586, 587, 618, 619, 658, 659, 690, 691, 738, 739, 786, 787, 810, 811, 858, 859
Offset: 1

Views

Author

Altug Alkan, Mar 17 2016

Keywords

Comments

It appears that the odd numbers in the sequence are prime.
This holds at least up to a million. - Charles R Greathouse IV, Feb 24 2022

Examples

			3 is a term because (1*2*5) is not divisible by (1+2+3).
		

Crossrefs

Programs

  • Mathematica
    nn = 10^3; Function[k, Select[Range@ nn, ! Divisible[k[[#]], # (# + 1)/2] &]]@ FoldList[Times, LinearRecurrence[{2, 1}, {1, 2}, nn]] (* Michael De Vlieger, Mar 19 2016, after Harvey P. Dale at A256832 *)
  • PARI
    a000129(n) = ([2, 1; 1, 0]^n)[2, 1];
    f(n) = prod(k=1, n, a000129(k)); \\ A256832
    for(n=1, 1e3, if(f(n) % (n*(n+1)/2) != 0, print1(n, ", ")));
    
  • PARI
    {g(n) = my(t, m=1);if( n<2, 0, while(1, t=contfracpnqn(concat([n,vector(m,i,2),n])); t=contfrac(n*t[1,1]/t[2, 1]); if(t[1]Bill McEachen, Feb 14 2022 (from A213891 code, faster)
    
  • PARI
    is(n)=my(m=n^2+n,q=Mod([2, 1; 1, 0],m),Q=q,P=Mod(1,m)); for(k=2,n, P*=(Q*=q)[2,1]; if(P==0, return(0))); 1 \\ Charles R Greathouse IV, Feb 14 2022