cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A344309 a(n) is the number of eigensequences (including eigenvalues, where they exist) of the Fibonacci recurrence in Zp where p is prime(n).

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 1, 2, 0, 3, 2, 1, 3, 0, 2, 1, 2, 5, 0, 2, 1, 2, 0, 9, 1, 3, 0, 2, 5, 5, 0, 2, 1, 4, 5, 4, 1, 0, 0, 1, 2, 3, 2, 1, 1, 10, 6, 0, 0, 3, 17, 2, 3, 2, 1, 2, 5, 2, 1, 11, 0, 1, 6, 2, 1, 1, 4, 1, 2, 3, 5, 2, 0, 1, 2, 0, 5, 1, 5, 3, 2, 21, 2, 1, 2, 0
Offset: 1

Views

Author

Michel Marcus, May 14 2021

Keywords

Comments

It appears that the indices m where a(m) = 0 give A270532.

Crossrefs

Programs

  • Maple
    A344309 := proc(i)
        local p,F ;
        p := ithprime(i) ;
        for n from 1 do
            F := combinat[fibonacci](n) ;
            if modp(F,p) =0 then
                if modp(p,5) in {2,3} then
                    return (p+1)/n-1 ;
                elif modp(p,5) in {1,4} then
                    return (p-1)/n+1 ;
                else
                    return 1 ;
                end if;
            end if;
        end do:
    end proc;
    seq(A344309(n),n=1..55) ; # R. J. Mathar, Feb 27 2023
  • PARI
    ep(n) = if(n==3, 5, my(p=prime(n)); fordiv(p^2-1, d, if(fibonacci(d)%p==0, return(d)))); \\ A001602
    a(n) = {my(p=prime(n), mp = p % 5); my(x=if ((mp==0), 4, if ((mp==1) || (mp==4), (p-1)^2/ep(n) + p - 1, (p^2-1)/ep(n) + 1 - p))); x/(p-1);}

Formula

a(n) = E(p)/(p-1) where p is prime(n) and E(p) = 4 if p=5; (p-1)^2/ep(n) + p - 1 if p==1 or 4 (mod 5); (p^2-1)/ep(n) + 1 - p if p==2 or 3 (mod 5), where ep(n) = A001602(n).
Showing 1-1 of 1 results.