A270546 Denominators of r-Egyptian fraction expansion for sqrt(1/2), where r(k) = 1/(2k-1).
2, 2, 5, 325, 200533, 65627675599, 22975481891957121466348, 1958997403653886589078102754522745217186637162, 141280756113351994103874857935521871912536028357392961997286697261498102983722388787617517574
Offset: 1
Examples
sqrt(1/2) = 1/(1*2) + 1/(3*2) + 1/(5*5) + 1/(7*325) + ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..12
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Programs
-
Mathematica
r[k_] := 1/(2k-1); f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Sqrt(1/2); Table[n[x, k], {k, 1, z}]
-
PARI
r(k) = 1/(2*k-1); f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x);); a(k, x=sqrt(1/2)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Apr 03 2016
Comments