cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270561 Binomial transform(2) of Motzkin numbers.

Original entry on oeis.org

1, 3, 11, 42, 164, 649, 2592, 10423, 42140, 171133, 697641, 2853587, 11707542, 48166629, 198677283, 821495226, 3404577572, 14140959469, 58859315929, 245493952745, 1025954717376, 4295887639272, 18021572480109, 75740267331717
Offset: 0

Views

Author

Vladimir Kruchinin, Mar 19 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Binomial[i, 2 k] Binomial[2 k, k]/(k + 1), {k, 0, i}] Binomial[2 n - i, n - i], {i, 0, n}], {n, 0, 23}] (* or *)
    nn = 23; m = CoefficientList[Series[(1 - x - (1 - 2 x - 3 x^2)^(1/2))/(2 x^2), {x, 0, nn}], x]; Table[Sum[Binomial[2 n - k, n] m[[k + 1]], {k, 0, n}], {n, 0, nn}] (* Michael De Vlieger, Mar 19 2016, latter after Jean-François Alcover at A001006 *)
  • Maxima
    A(x):=(1-sqrt(1-4*x))/2;
    M(x) := ( 1 - x - (1-2*x-3*x^2)^(1/2) ) / (2*x^2);
    makelist(coeff(taylor(M(A(x))*A(x)/(2*x-A(x)),x,0,10),x,n),n,0,10);
    
  • Maxima
    a(n):=sum((sum((binomial(i,2*k)*binomial(2*k,k))/(k+1),k,0,i))*binomial(2*n-i,n-i),i,0,n);
    
  • PARI
    a(n) = sum(i=0, n, sum(k=0, i, binomial(i, 2*k) * binomial(2*k, k) / (k+1)) * binomial(2*n-i, n-i)); \\ Indranil Ghosh, Mar 04 2017

Formula

G.f.: M(A(x))*A(x)/(2*x-A(x)), where M(x) is g.f. of Motzkin numbers (A001006) and A(x)/x is the g.f. of Catalan numbers (A000108).
a(n) = Sum_{i=0..n}((Sum_{k=0..i}((binomial(i,2*k)*binomial(2*k,k))/(k+1)))* binomial(2*n-i,n-i)).
a(n) = Sum_{k=0,n} (T(n,k)*m(k)), where m(k) is Motzkin numbers (A001006), T(n,k) = binomial(2*n-k,n) (triangle A092392).
a(n) ~ 3^(2*n + 5/2) / (sqrt(Pi) * n^(3/2) * 2^(n + 1/2)). - Vaclav Kotesovec, Mar 19 2016
a(n) = [x^n] (1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2*(1 - x)^(n+1)). - Ilya Gutkovskiy, Oct 30 2017