A270561 Binomial transform(2) of Motzkin numbers.
1, 3, 11, 42, 164, 649, 2592, 10423, 42140, 171133, 697641, 2853587, 11707542, 48166629, 198677283, 821495226, 3404577572, 14140959469, 58859315929, 245493952745, 1025954717376, 4295887639272, 18021572480109, 75740267331717
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
Table[Sum[Sum[Binomial[i, 2 k] Binomial[2 k, k]/(k + 1), {k, 0, i}] Binomial[2 n - i, n - i], {i, 0, n}], {n, 0, 23}] (* or *) nn = 23; m = CoefficientList[Series[(1 - x - (1 - 2 x - 3 x^2)^(1/2))/(2 x^2), {x, 0, nn}], x]; Table[Sum[Binomial[2 n - k, n] m[[k + 1]], {k, 0, n}], {n, 0, nn}] (* Michael De Vlieger, Mar 19 2016, latter after Jean-François Alcover at A001006 *)
-
Maxima
A(x):=(1-sqrt(1-4*x))/2; M(x) := ( 1 - x - (1-2*x-3*x^2)^(1/2) ) / (2*x^2); makelist(coeff(taylor(M(A(x))*A(x)/(2*x-A(x)),x,0,10),x,n),n,0,10);
-
Maxima
a(n):=sum((sum((binomial(i,2*k)*binomial(2*k,k))/(k+1),k,0,i))*binomial(2*n-i,n-i),i,0,n);
-
PARI
a(n) = sum(i=0, n, sum(k=0, i, binomial(i, 2*k) * binomial(2*k, k) / (k+1)) * binomial(2*n-i, n-i)); \\ Indranil Ghosh, Mar 04 2017
Formula
G.f.: M(A(x))*A(x)/(2*x-A(x)), where M(x) is g.f. of Motzkin numbers (A001006) and A(x)/x is the g.f. of Catalan numbers (A000108).
a(n) = Sum_{i=0..n}((Sum_{k=0..i}((binomial(i,2*k)*binomial(2*k,k))/(k+1)))* binomial(2*n-i,n-i)).
a(n) = Sum_{k=0,n} (T(n,k)*m(k)), where m(k) is Motzkin numbers (A001006), T(n,k) = binomial(2*n-k,n) (triangle A092392).
a(n) ~ 3^(2*n + 5/2) / (sqrt(Pi) * n^(3/2) * 2^(n + 1/2)). - Vaclav Kotesovec, Mar 19 2016
a(n) = [x^n] (1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2*(1 - x)^(n+1)). - Ilya Gutkovskiy, Oct 30 2017