A270562 a(n) is the largest number m satisfying lambda(m)=n, or zero if there is no solution, where lambda(m) is Carmichael's lambda function A002322(m).
2, 24, 0, 240, 0, 504, 0, 480, 0, 264, 0, 65520, 0, 0, 0, 16320, 0, 28728, 0, 13200, 0, 552, 0, 131040, 0, 0, 0, 6960, 0, 171864, 0, 32640, 0, 0, 0, 138181680, 0, 0, 0, 1082400, 0, 151704, 0, 5520, 0, 1128, 0, 4455360, 0, 0, 0, 12720, 0, 86184, 0, 13920, 0, 1416, 0, 6814407600, 0, 0, 0, 65280
Offset: 1
Keywords
Links
- Gheorghe Coserea, Table of n, a(n) for n = 1..50005
- R. D. Carmichael, Note on a new number theory function, Bull. Amer. Math. Soc. 16 (1910), 232-238.
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{f, fsz, g = 1, h = 1, p, e}, Which[n <= 0, Return[0], n == 1, Return[2], OddQ[n], Return[0]]; f = FactorInteger[n][[All, 1]]; fsz = Length[f]; For[k = 1, k <= fsz, k++, p = f[[k]]; e = 1; While[Mod[n, CarmichaelLambda[p^e]] == 0, e++]; g *= p^(e-1)]; Do[If[PrimeQ[d+1] && Mod[g, d+1] != 0, h *= (d+1)], {d, Divisors[n]}]; g *= h; If[CarmichaelLambda[g] != n, 0, g]]; a /@ Range[100] (* Jean-François Alcover, Oct 18 2019, after Gheorghe Coserea *)
-
PARI
lambda(n) = { \\ A002322 my(f=factor(n), fsz=matsize(f)[1]); lcm(vector(fsz, k, my(p=f[k,1], e=f[k,2]); if (p != 2, p^(e-1)*(p-1), e > 2, 2^(e-2), 2^(e-1)))); }; a(n) = { if (n <= 0, return(0), n==1, return(2), n%2, return(0)); my(f=factor(n), fsz=matsize(f)[1], g=1, h=1); for (k=1, fsz, my(p=f[k,1], e=1); while (n % lambda(p^e) == 0, e++); g *= p^(e-1)); fordiv(n, d, if (isprime(d+1) && g % (d+1) != 0, h *= (d+1))); g *= h; if (lambda(g) != n, 0, g); }; vector(64, n, a(n)) \\ Gheorghe Coserea, Feb 21 2019
Extensions
Corrected and extended by Gheorghe Coserea, Feb 21 2019
Entry revised by N. J. A. Sloane, May 03 2019
Comments