cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A321713 a(n) is the number of values k satisfying lambda(k)=n or zero if there is no solution, where lambda(k) is Carmichael's lambda function.

Original entry on oeis.org

2, 6, 0, 12, 0, 16, 0, 4, 0, 8, 0, 84, 0, 0, 0, 32, 0, 40, 0, 32, 0, 8, 0, 20, 0, 0, 0, 20, 0, 64, 0, 8, 0, 0, 0, 480, 0, 0, 0, 80, 0, 48, 0, 12, 0, 8, 0, 160, 0, 0, 0, 20, 0, 16, 0, 4, 0, 8, 0, 1216, 0, 0, 0, 8, 0, 64, 0, 0, 0, 16, 0, 872, 0, 0, 0, 0, 0, 24, 0, 160, 0, 8, 0, 532, 0, 0, 0, 52, 0, 120, 0, 12, 0, 0, 0, 424, 0, 0, 0, 100
Offset: 1

Views

Author

Gheorghe Coserea, Feb 21 2019

Keywords

Examples

			For n=12 there are a(12)=84 values N satisfying lambda(N)=12; the values are enumerated in A321714.
		

Crossrefs

Programs

  • PARI
    lambda(n) = { \\ A002322
      my(f=factor(n), fsz=matsize(f)[1]);
      lcm(vector(fsz, k, my(p=f[k,1], e=f[k,2]);
          if (p != 2, p^(e-1)*(p-1), e > 2, 2^(e-2), 2^(e-1))));
    };
    invlambda(n) = { \\ A270562
      if (n <= 0, return(0), n==1, return(2), n%2, return(0));
      my(f=factor(n), fsz=matsize(f)[1], g=1, h=1);
      for (k=1, fsz, my(p=f[k,1], e=1);
        while (n % lambda(p^e) == 0, e++); g *= p^(e-1));
      fordiv(n, d, if (isprime(d+1) && g % (d+1) != 0, h *= (d+1)));
      g *= h; if (lambda(g) != n, 0, g);
    };
    lambda_level(n) = {
      my(N = invlambda(n)); if (!N, return([])); my(s=List());
      fordiv(N, d, if (lambda(d) == n, listput(s, d)));
      Set(s);
    };
    a(n) = length(lambda_level(n));
    vector(100, n, a(n))
    
  • PARI
    b(n) = { \\ number of k satisfying lambda(k) | n
    my(R = 1);
    fordiv (n, d, if(isprime(d+1),
      my(e = 1); while(n % (d+1) == 0, n /= d+1; e++);
      if (d == 1 && e > 1, e++); R *= e+1));
    R
    };
    a(n) = if (n <= 0, 0, n == 1, 2, n % 2, 0, sumdiv(n, d, moebius(n/d) * b(d)));
    vector(100, n, a(n)) \\ Bertram Felgenhauer, Mar 27 2022

A270564 Terms of A143407, sorted.

Original entry on oeis.org

2, 24, 240, 264, 480, 504, 552, 1128, 1416, 1992, 2568, 4008, 4296, 5448, 5520, 5736, 6312, 6960, 8328, 8616, 9192, 10632, 11208, 11280, 11496, 12072, 12408, 12720, 13200, 13512, 13920, 14088, 14160, 15528, 15576, 15816, 16320, 17256, 18744, 19848, 19920, 20136, 20712, 21288, 21912, 22560, 23592
Offset: 1

Views

Author

Joerg Arndt, Mar 19 2016

Keywords

Comments

Numbers m such that r is the maximal order in the multiplicative group modulo m and there is no M > m with the same maximal order modulo M.

Crossrefs

A321714 Numbers k such that lambda(k) = 12.

Original entry on oeis.org

13, 26, 35, 39, 45, 52, 65, 70, 78, 90, 91, 104, 105, 112, 117, 130, 140, 144, 156, 180, 182, 195, 208, 210, 234, 260, 273, 280, 312, 315, 336, 360, 364, 390, 420, 455, 468, 520, 546, 560, 585, 624, 630, 720, 728, 780, 819, 840, 910, 936, 1008, 1040, 1092, 1170, 1260, 1365, 1456, 1560, 1638, 1680, 1820, 1872, 2184, 2340, 2520, 2730, 3120, 3276, 3640, 4095, 4368, 4680, 5040, 5460, 6552, 7280, 8190, 9360, 10920, 13104, 16380, 21840, 32760, 65520
Offset: 1

Views

Author

Gheorghe Coserea, Feb 21 2019

Keywords

Comments

Here lambda is Carmichael's lambda function (see A002322).

Crossrefs

Programs

  • Mathematica
    Select[Range[65520], CarmichaelLambda[#] == 12 &] (* Paolo Xausa, Feb 28 2024 *)
  • PARI
    lambda(n) = { \\ A002322
      my(f=factor(n), fsz=matsize(f)[1]);
      lcm(vector(fsz, k, my(p=f[k,1], e=f[k,2]);
          if (p != 2, p^(e-1)*(p-1), e > 2, 2^(e-2), 2^(e-1))));
    };
    invlambda(n) = { \\ A270562
      if (n <= 0, return(0), n==1, return(2), n%2, return(0));
      my(f=factor(n), fsz=matsize(f)[1], g=1, h=1);
      for (k=1, fsz, my(p=f[k,1], e=1);
        while (n % lambda(p^e) == 0, e++); g *= p^(e-1));
      fordiv(n, d, if (isprime(d+1) && g % (d+1) != 0, h *= (d+1)));
      g *= h; if (lambda(g) != n, 0, g);
    };
    lambda_level(n) = {
      my(N = invlambda(n)); if (!N, return([])); my(s=List());
      fordiv(N, d, if (lambda(d) == n, listput(s, d)));
      Set(s);
    };
    lambda_level(12)
Showing 1-3 of 3 results.