A270693 Alternating sum of centered 25-gonal numbers.
1, -25, 51, -100, 151, -225, 301, -400, 501, -625, 751, -900, 1051, -1225, 1401, -1600, 1801, -2025, 2251, -2500, 2751, -3025, 3301, -3600, 3901, -4225, 4551, -4900, 5251, -5625, 6001, -6400, 6801, -7225, 7651, -8100, 8551, -9025, 9501, -10000, 10501
Offset: 0
Links
- OEIS Wiki, Centered polygonal numbers
- Eric Weisstein's World of Mathematics, Centered Polygonal Number
- Index entries for linear recurrences with constant coefficients, signature (-2,0,2,1).
Crossrefs
Programs
-
Magma
[((-1)^n*(50*n^2 + 100*n + 29) - 21)/8 : n in [0..40]]; // Wesley Ivan Hurt, Mar 21 2016
-
Maple
A270693:=n->((-1)^n*(50*n^2 + 100*n + 29) - 21)/8: seq(A270693(n), n=0..100); # Wesley Ivan Hurt, Sep 18 2017
-
Mathematica
LinearRecurrence[{-2, 0, 2, 1}, {1, -25, 51, -100}, 41] Table[((-1)^n (50 n^2 + 100 n + 29) - 21)/8, {n, 0, 40}]
-
PARI
x='x+O('x^100); Vec((1-23*x+x^2)/((1-x)*(1+x)^3)) \\ Altug Alkan, Mar 21 2016
Formula
G.f.: (1 - 23*x + x^2)/((1 - x)*(1 + x)^3).
E.g.f.: (1/8)*(-21*exp(x) + (29 - 150*x + 50*x^2)*exp(-x)).
a(n) = -2*a(n-1) + 2*a(n-3) + a(n-4).
a(n) = ((-1)^n*(50*n^2 + 100*n + 29) - 21)/8.
Comments