cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270702 Total sum T(n,k) of the sizes of all blocks with minimal element k in all set partitions of {1,2,...,n}; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 3, 1, 9, 4, 2, 30, 16, 9, 5, 112, 67, 41, 25, 15, 463, 299, 195, 127, 82, 52, 2095, 1429, 979, 670, 456, 307, 203, 10279, 7307, 5204, 3702, 2623, 1845, 1283, 877, 54267, 39848, 29278, 21485, 15717, 11437, 8257, 5894, 4140, 306298, 230884, 174029, 131007, 98367, 73561, 54692, 40338, 29427, 21147
Offset: 1

Views

Author

Alois P. Heinz, Mar 21 2016

Keywords

Examples

			Row n=3 is [9, 4, 2] = [3+2+2+1+1, 0+0+1+2+1, 0+1+0+0+1] because the set partitions of {1,2,3} are: 123, 12|3, 13|2, 1|23, 1|2|3.
Triangle T(n,k) begins:
:      1;
:      3,     1;
:      9,     4,     2;
:     30,    16,     9,     5;
:    112,    67,    41,    25,    15;
:    463,   299,   195,   127,    82,    52;
:   2095,  1429,   979,   670,   456,   307,  203;
:  10279,  7307,  5204,  3702,  2623,  1845, 1283,  877;
:  54267, 39848, 29278, 21485, 15717, 11437, 8257, 5894, 4140;
		

Crossrefs

Main and lower diagonals give: A000110(n-1), A270756, A270757, A270758, A270759, A270760, A270761, A270762, A270763, A270764.
Row sums give A070071.
Reflected triangle gives A270701.
T(2n-1,n) gives A270703.

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, [1, 0], add(
         `if`(t=1 and j<>m+1, 0, (p->p+`if`(j=-t or t=1 and j=m+1,
          [0, p[1]], 0))(b(n-1, max(m, j), `if`(t=1 and j=m+1, -j,
         `if`(t<0, t, `if`(t>0, t-1, 0)))))), j=1..m+1))
        end:
    T:= (n, k)-> b(n, 0, k)[2]:
    seq(seq(T(n, k), k=1..n), n=1..12);
  • Mathematica
    b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m + 1, 0, Function[p, p + If[j == -t || t == 1 && j == m + 1, {0, p[[1]]}, 0] ][b[n - 1, Max[m, j], If[t == 1 && j == m + 1, -j, If[t < 0, t, If[t > 0, t - 1, 0]]]]]], {j, 1, m + 1}]];
    T[n_, k_] := b[n, 0, k][[2]];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 24 2016, translated from Maple *)

Formula

T(n,k) = A270701(n,n-k+1).