A270737 a(n) = ((n+2)/2)*Sum_{k=0..n/2} (Sum_{i=0..n-2*k} (binomial(k+1,n-2*k-i)*binomial(k+i,k))*F(k+1)/(k+1)), where F(k) is Fibonacci numbers.
1, 3, 5, 10, 20, 42, 91, 195, 415, 880, 1864, 3952, 8385, 17795, 37765, 80138, 170044, 360810, 765595, 1624515, 3447071, 7314368, 15520400, 32932800, 69880225, 148279107, 314634021, 667623210, 1416632420, 3005958090, 6378354619
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,0,2,1).
Programs
-
Mathematica
Table[((n + 2)/2) Sum[Sum[(Binomial[k + 1, n - 2 k - i] Binomial[k + i, k])/(k + 1) Fibonacci[k + 1], {i, 0, n - 2 k}], {k, 0, n/2}], {n, 0, 30}] (* or *) CoefficientList[Series[(-x^2 + x + 1)/(-x^6 - 2 x^5 - 2 x + 1), {x, 0, 30}], x] (* Michael De Vlieger, Mar 25 2016 *) LinearRecurrence[{2, 0, 0, 0, 2, 1}, {1, 3, 5, 10, 20, 42}, 100] (* G. C. Greubel, Mar 25 2016 *)
-
Maxima
a(n):=(n+2)/2*(sum(sum(binomial(k+1,n-2*k-i)*binomial(k+i,k),i,0,n-2*k)*fib(k+1)/(k+1),k,0,n/2));
-
PARI
my(x='x+O('x^40)); Vec((-x^2+x+1)/(-x^6-2*x^5-2*x+1)) \\ Altug Alkan, Mar 22 2016
Formula
G.f.: (-x^2+x+1)/(-x^6-2*x^5-2*x+1).
a(n) = 2*a(n-1) + 2*a(n-5) + a(n-6). - G. C. Greubel, Mar 25 2016