cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270737 a(n) = ((n+2)/2)*Sum_{k=0..n/2} (Sum_{i=0..n-2*k} (binomial(k+1,n-2*k-i)*binomial(k+i,k))*F(k+1)/(k+1)), where F(k) is Fibonacci numbers.

Original entry on oeis.org

1, 3, 5, 10, 20, 42, 91, 195, 415, 880, 1864, 3952, 8385, 17795, 37765, 80138, 170044, 360810, 765595, 1624515, 3447071, 7314368, 15520400, 32932800, 69880225, 148279107, 314634021, 667623210, 1416632420, 3005958090, 6378354619
Offset: 0

Views

Author

Vladimir Kruchinin, Mar 22 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[((n + 2)/2) Sum[Sum[(Binomial[k + 1, n - 2 k - i] Binomial[k + i, k])/(k + 1) Fibonacci[k + 1], {i, 0, n - 2 k}], {k, 0, n/2}], {n, 0, 30}] (* or *)
    CoefficientList[Series[(-x^2 + x + 1)/(-x^6 - 2 x^5 - 2 x + 1), {x, 0, 30}], x] (* Michael De Vlieger, Mar 25 2016 *)
    LinearRecurrence[{2, 0, 0, 0, 2, 1}, {1, 3, 5, 10, 20, 42}, 100] (* G. C. Greubel, Mar 25 2016 *)
  • Maxima
    a(n):=(n+2)/2*(sum(sum(binomial(k+1,n-2*k-i)*binomial(k+i,k),i,0,n-2*k)*fib(k+1)/(k+1),k,0,n/2));
    
  • PARI
    my(x='x+O('x^40)); Vec((-x^2+x+1)/(-x^6-2*x^5-2*x+1)) \\ Altug Alkan, Mar 22 2016

Formula

G.f.: (-x^2+x+1)/(-x^6-2*x^5-2*x+1).
a(n) = 2*a(n-1) + 2*a(n-5) + a(n-6). - G. C. Greubel, Mar 25 2016