cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A270837 Numbers k such that sigma(k-1) + phi(k-1) = (5*k-7)/2.

Original entry on oeis.org

3, 5, 7, 9, 17, 33, 65, 67, 129, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769, 65537, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649, 4294967297, 5606129563
Offset: 1

Views

Author

Jaroslav Krizek, Mar 23 2016

Keywords

Comments

Numbers k such that A065387(k-1) = (5*k-7)/2.
Numbers of the form 2^k + 1 for k >= 1 from A000051 are terms.
Prime terms are in A270779.

Examples

			17 is a term because sigma(16)+phi(16) = 31+8 = 39 = (5*17-7)/2.
		

Crossrefs

Programs

  • Magma
    [n: n in[2..10^7] | 2*(SumOfDivisors(n-1) + EulerPhi(n-1)) eq 5*n-7];
    
  • Mathematica
    Select[Range[10^6], DivisorSigma[1, # - 1] + EulerPhi[# - 1] == (5 # - 7)/2 &] (* Michael De Vlieger, Mar 24 2016 *)
  • PARI
    lista(nn) = {for(n=2, nn, if(sigma(n-1) + eulerphi(n-1) == (5*n-7)/2, print1(n, ", "))); } \\ Altug Alkan, Mar 23 2016

Extensions

a(29)-a(31) from Michel Marcus, Apr 05 2016
a(32)-a(35) from Giovanni Resta, Apr 11 2016

A270778 Primes p such that sigma(p-1) - phi(p-1) = (3p-5)/2.

Original entry on oeis.org

3, 5, 11, 17, 257, 65537, 119831
Offset: 1

Views

Author

Jaroslav Krizek, Mar 22 2016

Keywords

Comments

Primes p such that A051612(p-1) = (3p-5)/2.
Fermat primes from A019434 are terms.
If a(8) exists, it must be larger than 10^10.
Prime terms from A270836.
Necessary condition: sigma_-1(p-1) < 2. Thus a(n)-1 is a deficient number and a(n) = 2 mod 3 for n > 1. - Charles R Greathouse IV, Apr 01 2016
If a(8) exists, it must be larger than 10^11. - Charles R Greathouse IV, Apr 01 2016
If a(8) exists, it must be larger than 10^13. - Giovanni Resta, Apr 11 2016

Examples

			17 is a term because sigma(16)-phi(16) = 31-8 = 23 = (3*17-5)/2.
		

Crossrefs

Programs

  • Magma
    [n: n in[1..10^7] | IsPrime(n) and 2*(SumOfDivisors(n-1) - EulerPhi(n-1)) eq 3*n-5]
    
  • Mathematica
    Select[Prime@ Range[10^6], DivisorSigma[1, # - 1] - EulerPhi[# - 1] == (3 # - 5)/2 &] (* Michael De Vlieger, Mar 23 2016 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (sigma(p-1) - eulerphi(p-1) == (3*p-5)/2, print1(p, ", "))); \\ Michel Marcus, Mar 23 2016
    
  • PARI
    is(n)=my(f=factor(n-1)); sigma(f) - eulerphi(f) == (3*n-5)/2 && isprime(n) \\ Charles R Greathouse IV, Apr 01 2016
Showing 1-2 of 2 results.