A270871
a(n) = n^7 + 6*n^6 + 26*n^5 + 73*n^4 + 152*n^3 + 222*n^2 + 203*n + 8.
Original entry on oeis.org
8, 691, 5030, 25511, 100372, 324323, 898706, 2206135, 4914656, 10116467, 19506238, 35604071, 62028140, 103822051, 167841962, 263208503, 401828536, 598991795, 874047446, 1251165607, 1760188868, 2437578851, 3327462850, 4482785591, 5966571152, 7853300083
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Andrew Misseldine, Counting Schur Rings over Cyclic Groups, arXiv preprint arXiv:1508.03757 [math.RA], 2015. (page 19, 4th row; page 21, 7th row).
- Index entries for linear recurrences with constant coefficients, signature (8,-28, 56,-70,56,-28,8,-1).
-
[n^7+6*n^6+26*n^5+73*n^4+152*n^3+222*n^2+203*n+8: n in [0..40]];
-
Table[n^7 + 6 n^6 + 26 n^5 + 73 n^4 + 152 n^3 + 222 n^2 + 203 n + 8, {n, 0, 40}]
LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{8,691,5030,25511,100372,324323,898706,2206135},30] (* Harvey P. Dale, Dec 17 2023 *)
-
x='x+O('x^99); Vec((8+627*x-274*x^2+4171*x^3-1012*x^4+1897*x^5-450*x^6+73*x^7) / (1-x)^8) \\ Altug Alkan, Apr 03 2016
A270872
a(n) = n^8 + 7*n^7 + 34*n^6 + 111*n^5 + 275*n^4 + 511*n^3 + 703*n^2 + 623*n + 13.
Original entry on oeis.org
13, 2278, 19439, 117910, 550009, 2072078, 6584443, 18269614, 45445445, 103390294, 218437543, 433677158, 816642289, 1469399230, 2541499379, 4246292158, 6881138173, 10852102214, 16703746015, 25154681014, 37139581673, 53858400238, 76833564139, 107975977550
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Andrew Misseldine, Counting Schur Rings over Cyclic Groups, arXiv preprint arXiv:1508.03757 [math.RA], 2015. (page 19, 4th row; page 21, 8th row).
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
[n^8+7*n^7+34*n^6+111*n^5+275*n^4+511*n^3+703*n^2+623*n+13: n in [0..40]];
-
Table[n^8 + 7 n^7 + 34 n^6 + 111 n^5 + 275 n^4 + 511 n^3 + 703 n^2 + 623 n + 13, {n, 0, 40}]
LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{13,2278,19439,117910,550009,2072078,6584443,18269614,45445445},30] (* Harvey P. Dale, Jan 14 2023 *)
-
x='x+O('x^99); Vec((13+2161*x-595*x^2+23875*x^3-1091*x^4+19271*x^5-4997*x^6+1909*x^7-226*x^8)/(1-x)^9) \\ Altug Alkan, Apr 04 2016
A270873
a(n) = n^9 + 8*n^8 + 43*n^7 + 159*n^6 + 452*n^5 + 997*n^4 + 1725*n^3 + 2272*n^2 + 1990*n + 21.
Original entry on oeis.org
21, 7668, 75545, 545730, 3015021, 13239896, 48243393, 151298070, 420233285, 1056651996, 2446142121, 5282430218, 10751650845, 20796493440, 38483939921, 68504620446, 117836491893, 196610583620, 319221957945, 505734798546, 783636668621, 1190003472168
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Andrew Misseldine, Counting Schur Rings over Cyclic Groups, arXiv preprint arXiv:1508.03757 [math.RA], 2015. (page 19, 4th row; page 21, 9th row).
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
[n^9+8*n^8+43*n^7+159*n^6+452*n^5+997*n^4+1725*n^3+2272*n^2+1990*n+21: n in [0..40]];
-
Table[n^9 + 8 n^8 + 43 n^7 + 159 n^6 + 452 n^5 + 997 n^4 + 1725 n^3 + 2272 n^2 + 1990 n + 21, {n, 0, 40}]
LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{21,7668,75545,545730,3015021,13239896,48243393,151298070,420233285,1056651996},30] (* Harvey P. Dale, Dec 02 2018 *)
-
my(x='x+O('x^99)); Vec((21+7458*x-190*x^2+132820*x^3+41496*x^4+187124*x^5-30698*x^6+30660*x^7-6565*x^8+754*x^9)/(1-x)^10) \\ Altug Alkan, Apr 04 2016
A270874
a(n) = n^10 + 9*n^9 + 53*n^8 + 218*n^7 + 695*n^6 + 1754*n^5 + 3572*n^4 + 5854*n^3 + 7510*n^2 + 6559*n + 34.
Original entry on oeis.org
34, 26259, 294888, 2528263, 16531326, 84603579, 353479684, 1252968303, 3885899418, 10799026531, 27392790624, 64342966359, 141552806518, 294334006923, 582732259836, 1105171977919, 2017898582034, 3562049183283, 6100587181528, 10167796877991, 16534554287214
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Andrew Misseldine, Counting Schur Rings over Cyclic Groups, arXiv preprint arXiv:1508.03757 [math.RA], 2015. (page 19, 4th row; page 21, 10th row).
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
[n^10 +9*n^9 +53*n^8 +218*n^7 +695*n^6 +1754*n^5 +3572*n^4 +5854*n^3 +7510*n^2 +6559*n +34: n in [0..30]];
-
Table[n^10 + 9 n^9 + 53 n^8 + 218 n^7 + 695 n^6 + 1754 n^5 + 3572 n^4 + 5854 n^3 + 7510 n^2 + 6559 n + 34, {n, 0, 30}]
LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{34,26259,294888,2528263,16531326,84603579,353479684,1252968303,3885899418,10799026531,27392790624},30] (* Harvey P. Dale, Apr 10 2017 *)
-
x='x+O('x^99); Vec((34+25885*x+7909*x^2+723130*x^3+617758*x^4+1806700*x^5+ 96940*x^6+428806*x^7-101360*x^8+25527*x^9-2529*x^10)/(1-x)^11) \\ Altug Alkan, Apr 05 2016
Showing 1-4 of 4 results.