A270873 a(n) = n^9 + 8*n^8 + 43*n^7 + 159*n^6 + 452*n^5 + 997*n^4 + 1725*n^3 + 2272*n^2 + 1990*n + 21.
21, 7668, 75545, 545730, 3015021, 13239896, 48243393, 151298070, 420233285, 1056651996, 2446142121, 5282430218, 10751650845, 20796493440, 38483939921, 68504620446, 117836491893, 196610583620, 319221957945, 505734798546, 783636668621, 1190003472168
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Andrew Misseldine, Counting Schur Rings over Cyclic Groups, arXiv preprint arXiv:1508.03757 [math.RA], 2015. (page 19, 4th row; page 21, 9th row).
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Programs
-
Magma
[n^9+8*n^8+43*n^7+159*n^6+452*n^5+997*n^4+1725*n^3+2272*n^2+1990*n+21: n in [0..40]];
-
Mathematica
Table[n^9 + 8 n^8 + 43 n^7 + 159 n^6 + 452 n^5 + 997 n^4 + 1725 n^3 + 2272 n^2 + 1990 n + 21, {n, 0, 40}] LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{21,7668,75545,545730,3015021,13239896,48243393,151298070,420233285,1056651996},30] (* Harvey P. Dale, Dec 02 2018 *)
-
PARI
my(x='x+O('x^99)); Vec((21+7458*x-190*x^2+132820*x^3+41496*x^4+187124*x^5-30698*x^6+30660*x^7-6565*x^8+754*x^9)/(1-x)^10) \\ Altug Alkan, Apr 04 2016
Formula
G.f.: (21+7458*x-190*x^2+132820*x^3+41496*x^4+187124*x^5-30698*x^6+30660*x^7-6565*x^8+754*x^9)/(1-x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10).