cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270926 Numbers k such that k*R(k) can be represented as the sum of two nonzero squares, where R(k) is the reverse of the decimal expansion of k.

Original entry on oeis.org

5, 10, 15, 16, 18, 20, 25, 30, 37, 40, 50, 51, 52, 55, 58, 60, 61, 70, 73, 78, 80, 81, 85, 87, 89, 90, 98, 100, 101, 104, 106, 109, 110, 111, 122, 125, 128, 145, 146, 148, 149, 150, 159, 160, 162, 164, 165, 168, 169, 174, 176, 180, 181, 192, 195, 198, 200, 202, 208, 212, 220, 221, 222
Offset: 1

Views

Author

Soumil Mandal, Mar 26 2016

Keywords

Comments

k*R(k) is the square of the hypotenuse of a right triangle.
Palindromes in this sequence are 5, 55, 101, 111, 181, 202, 212, 222, 232, 272, 292, 303, 313, 323, 333, 353, 373, ... - Altug Alkan, Mar 26 2016

Examples

			For k=5, R(k)=5 and k*R(k)=25, which is 3^2 + 4^2.
For k=10, R(k)=1 and k*R(k)=10, which is 1^2 + 3^2.
For k=58, R(k)=85 and k*R(k)=4930, which is 13^2 + 69^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 222, Length[PowersRepresentations[# FromDigits@ Reverse@ IntegerDigits@ #, 2, 2] /. {0, } -> Nothing] > 0 &] (* _Michael De Vlieger, Mar 26 2016 *)
    stnzsQ[{a_,b_}]:=AllTrue[{a,b},IntegerQ[Sqrt[#]]&]; Select[Range[ 250], Length[ Select[IntegerPartitions[#  IntegerReverse[#],{2}],stnzsQ]] >0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 12 2020 *)
  • PARI
    isA000404(n) = {for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2))}
    lista(nn) = for(n=1, nn, if(isA000404(n*eval(concat(Vecrev(Str(n))))), print1(n, ", "))); \\ Altug Alkan, Mar 26 2016
    
  • Python
    # Soumil Mandal, Mar 27 2016
    def isHypotenuse(num):
        a, b = 1, 1
        a2, b2 = a**2, b**2
        while a2 + b2 <= num:
            while a2 + b2 <= num:
                if a2 + b2 == num:
                    return True
                b += 1
                b2 = b**2
            a += 1
            a2 = a**2
            b = 1
            b2 = b**2
        return False
    for x in range(20000):
        if isHypotenuse(x * int(str(x)[::-1])):
            print(x)

Extensions

More terms from Altug Alkan, Mar 26 2016