A270952 T(n, k) is the number of k-element connected subposets of the n-th Boolean lattice, 0 <= k <= 2^n.
1, 1, 1, 2, 1, 1, 4, 5, 4, 1, 1, 8, 19, 42, 61, 56, 28, 8, 1, 1, 16, 65, 304, 1129, 3200, 6775, 10680, 12600, 11386, 8002, 4368, 1820, 560, 120, 16, 1, 1, 32, 211, 1890, 14935, 97470
Offset: 0
Examples
The triangle begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 1 1 1 2 1 2 1 4 5 4 1 3 1 8 19 42 61 56 28 8 1 4 1 16 65 304 1129 3200 6775 10680 12600 11386 8002 4368 1820 560 120 5 1 32 211 1890 14935 97470 ... For T(2, 2) = 5: [{},{1}], [{},{2}], [{},{1,2}], [{1},{1,2}], [{2},{1,2}].
Links
- Eric Weisstein's World of Mathematics, Boolean Algebra.
Programs
-
Sage
def ConnectedSubs(n): # Returns row n of T(n, k). Bn = posets.BooleanLattice(n) counts = [0]*(2^n+1) for X in Subsets(range(2^n)): if Bn.subposet(X).is_connected(): counts[len(X)] += 1 return counts
Comments