cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270953 Number T(n,k) of set partitions of [n] having exactly k pairs (m,m+1) such that m+1 is in some block b and m is in block b+1; triangle T(n,k), n>=0, 0<=k<=n-floor((1+sqrt(max(0,8n-7)))/2), read by rows.

Original entry on oeis.org

1, 1, 2, 4, 1, 9, 6, 25, 24, 3, 84, 91, 27, 1, 323, 374, 159, 21, 1377, 1699, 857, 197, 10, 6412, 8410, 4726, 1421, 174, 4, 32312, 44794, 27385, 9573, 1783, 127, 1, 174941, 254718, 167097, 64724, 15158, 1856, 76, 1011357, 1538027, 1071422, 449567, 121464, 20074, 1650, 36
Offset: 0

Views

Author

Alois P. Heinz, Mar 26 2016

Keywords

Examples

			T(3,1) = 1: 13|2.
T(4,1) = 6: 124|3, 134|2, 13|24, 13|2|4, 14|23, 1|24|3.
T(5,2) = 3: 135|24, 13|25|4, 15|24|3.
T(6,3) = 1: 136|25|4.
T(7,3) = 21: 1247|36|5, 1347|26|5, 1357|246, 135|247|6, 137|246|5, 1367|25|4, 136|257|4, 136|25|47, 136|25|4|7, 137|256|4, 13|257|46, 13|25|47|6, 137|26|45, 13|27|46|5, 147|236|5, 157|246|3, 15|247|36, 15|24|37|6, 17|246|35, 1|247|36|5, 17|26|35|4.
T(8,4) = 10: 1358|247|6, 1368|257|4, 136|258|47, 136|25|48|7, 138|257|46, 13|258|47|6, 138|27|46|5, 158|247|36, 15|248|37|6, 18|247|36|5.
T(9,5) = 4: 1369|258|47, 136|259|48|7, 139|258|47|6, 159|248|37|6.
T(10,6) = 1: 136(10)|259|48|7.
Triangle T(n,k) begins:
00 :      1;
01 :      1;
02 :      2;
03 :      4,     1;
04 :      9,     6;
05 :     25,    24,     3;
06 :     84,    91,    27,    1;
07 :    323,   374,   159,   21;
08 :   1377,  1699,   857,  197,   10;
09 :   6412,  8410,  4726, 1421,  174,   4;
10 :  32312, 44794, 27385, 9573, 1783, 127,  1;
		

Crossrefs

Row sums give A000110.
T(2n,n) gives A270965.
Last terms of rows give A270967.

Programs

  • Maple
    b:= proc(n, i, m) option remember; expand(`if`(n=0, 1, add(
           b(n-1, j, max(m, j))*`if`(j=i-1, x, 1), j=1..m+1)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 1, 0)):
    seq(T(n), n=0..14);
  • Mathematica
    b[n_, i_, m_] := b[n, i, m] = Expand[If[n == 0, 1, Sum[b[n - 1, j, Max[m, j]]*If[j == i - 1, x, 1], {j, 1, m + 1}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 1, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 12 2016, after Alois P. Heinz *)

Formula

T(A000217(n+1),A000217(n)) = 1 for n>=0.
T(A000217(n+1)-1,A000217(n)-1) = 1+n for n>=1.
T(A000217(n+1)-2,A000217(n)-2) = A000217(1+n) for n>=2.