A056857
Triangle read by rows: T(n,c) = number of successive equalities in set partitions of n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 15, 20, 12, 4, 1, 52, 75, 50, 20, 5, 1, 203, 312, 225, 100, 30, 6, 1, 877, 1421, 1092, 525, 175, 42, 7, 1, 4140, 7016, 5684, 2912, 1050, 280, 56, 8, 1, 21147, 37260, 31572, 17052, 6552, 1890, 420, 72, 9, 1, 115975, 211470, 186300, 105240, 42630, 13104, 3150, 600, 90, 10, 1
Offset: 1
Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000
For example {1, 2, 1, 2, 2, 3} is a set partition of {1, 2, 3, 4, 5, 6} and has 1 successive equality, at i = 4.
Triangle begins:
1;
1, 1;
2, 2, 1;
5, 6, 3, 1;
15, 20, 12, 4, 1;
52, 75, 50, 20, 5, 1;
203, 312, 225, 100, 30, 6, 1;
...
From _Paul Barry_, Apr 23 2009: (Start)
Production matrix is
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 3, 3, 1, 1;
1, 4, 6, 4, 1, 1;
1, 5, 10, 10, 5, 1, 1;
1, 6, 15, 20, 15, 6, 1, 1;
1, 7, 21, 35, 35, 21, 7, 1, 1;
1, 8, 28, 56, 70, 56, 28, 8, 1, 1; ... (End)
- W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [Apparently unpublished]
- Alois P. Heinz, Rows n = 1..141, flattened
- H. W. Becker, Rooks and rhymes, Math. Mag., 22 (1948/49), 23-26. See Table III.
- H. W. Becker, Rooks and rhymes, Math. Mag., 22 (1948/49), 23-26. [Annotated scanned copy]
- Fufa Beyene, Jörgen Backelin, Roberto Mantaci, and Samuel A. Fufa, Set Partitions and Other Bell Number Enumerated Objects, J. Int. Seq., Vol. 26 (2023), Article 23.1.8.
- A. Hennessy and Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011) # 11.8.2, Corollary 17.
- G. Hurst and A. Schultz, An elementary (number theory) proof of Touchard's congruence, arXiv:0906.0696v2 [math.CO], 2009.
- A. O. Munagi, Set partitions with successions and separations, Intl. J. Math. Math. Sci. 2005 (2005) 451-463.
- M. Spivey, A generalized recurrence for Bell numbers, J. Int. Seq., 11 (2008), no. 2, Article 08.2.5
- W. Yang, Bell numbers and k-trees, Disc. Math. 156 (1996) 247-252.
-
with(combinat): A056857:=(n,c)->binomial(n-1,c)*bell(n-1-c): for n from 1 to 11 do seq(A056857(n,c),c=0..n-1) od; # yields sequence in triangular form; Emeric Deutsch, Nov 10 2006
with(linalg): # Yields sequence in matrix form:
A056857_matrix := n -> subs(exp(1)=1, exponential(exponential(
matrix(n,n,[seq(seq(`if`(j=k+1,j,0),k=0..n-1),j=0..n-1)])))):
A056857_matrix(8); # Peter Luschny, Apr 18 2011
-
t[n_, k_] := BellB[n-1-k]*Binomial[n-1, k]; Flatten[ Table[t[n, k], {n, 1, 11}, {k, 0, n-1}]](* Jean-François Alcover, Apr 25 2012, after Emeric Deutsch *)
-
B(n) = sum(k=0, n, stirling(n, k, 2));
tabl(nn)={for(n=1, nn, for(k=0, n - 1, print1(B(n - 1 - k) * binomial(n - 1, k),", ");); print(););};
tabl(12); \\ Indranil Ghosh, Mar 19 2017
-
from sympy import bell, binomial
for n in range(1,12):
print([bell(n - 1 - k) * binomial(n - 1, k) for k in range(n)]) # Indranil Ghosh, Mar 19 2017
-
def a(n): return (-1)^n / factorial(n)
@cached_function
def p(n, m):
R = PolynomialRing(QQ, "x")
if n == 0: return R(a(m))
return R((m + x)*p(n - 1, m) - (m + 1)*p(n - 1, m + 1))
for n in range(11): print(p(n, 0).list()) # Peter Luschny, Jun 18 2023
A185982
Triangle read by rows: number of set partitions of n elements with k connectors, 0<=k
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 16, 24, 10, 1, 1, 39, 86, 61, 15, 1, 1, 105, 307, 313, 129, 21, 1, 1, 314, 1143, 1520, 891, 242, 28, 1, 1, 1035, 4513, 7373, 5611, 2161, 416, 36, 1, 1, 3723, 18956, 36627, 34213, 17081, 4658, 670, 45, 1, 1, 14494, 84546, 188396, 208230, 127540, 45095, 9187, 1025, 55, 1
Offset: 1
A connector is a pair (a, a+1) in a set partition if a is in block i and a+1 is in block i+1, for some i. For example a(4,1) = 7, counting 1/234, 13/2/4, 14/23, 134/2, 12/34, 124/3, 123/4.
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 7, 6, 1;
1, 16, 24, 10, 1;
1, 39, 86, 61, 15, 1;
1, 105, 307, 313, 129, 21, 1;
...
Columns k=0-10 give:
A000012,
A271788,
A271789,
A271790,
A271791,
A271792,
A271793,
A271794,
A271795,
A271796,
A271797.
-
b:= proc(n, i, m) option remember; `if`(n=0, 1, add(expand(
b(n-1, j, max(m, j))*`if`(j=i+1, x, 1)), j=1..m+1))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b(n, 1, 0)):
seq(T(n), n=1..12); # Alois P. Heinz, Mar 25 2016
-
b[n_, i_, m_] := b[n, i, m] = If[n == 0, 1, Sum[b[n-1, j, Max[m, j]]*If[j == i+1, x, 1], {j, 1, m+1}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n-1}]][b[n, 1, 0]]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 13 2016, after Alois P. Heinz *)
A270954
Number of set partitions of [n] having no pairs (m,m+1) such that m+1 is in some block b and m is in block b+1.
Original entry on oeis.org
1, 1, 2, 4, 9, 25, 84, 323, 1377, 6412, 32312, 174941, 1011357, 6210298, 40323011, 275763910, 1979709852, 14875239212, 116679269248, 953201694216, 8093501305721, 71291395351760, 650357174742217, 6134966541625355, 59759476024690454, 600309156303711764
Offset: 0
a(3) = 4: 123, 12|3, 1|23, 1|2|3.
a(4) = 9: 1234, 123|4, 12|34, 12|3|4, 1|234, 1|23|4, 14|2|3, 1|2|34, 1|2|3|4.
-
b:= proc(n, i, m) option remember; `if`(n=0, 1, add(
`if`(j=i-1, 0, b(n-1, j, max(m, j))), j=1..m+1))
end:
a:= n-> b(n, 1, 0):
seq(a(n), n=0..25);
-
b[n_, i_, m_] := b[n, i, m] = If[n == 0, 1, Sum[If[j == i - 1, 0, b[n - 1, j, Max[m, j]]], {j, 1, m + 1}]];
a[n_] := b[n, 1, 0];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 27 2018, translated from Maple *)
A270955
Number of set partitions of [n] having exactly one pair (m,m+1) such that m+1 is in some block b and m is in block b+1.
Original entry on oeis.org
1, 6, 24, 91, 374, 1699, 8410, 44794, 254718, 1538027, 9818858, 66030017, 466215802, 3446197857, 26600048069, 213901723087, 1788292021799, 15514751860549, 139443578638933, 1296371888068649, 12448726758061263, 123316489529161713, 1258632265803403708
Offset: 3
a(3) = 1: 13|2.
a(4) = 6: 124|3, 134|2, 13|24, 13|2|4, 14|23, 1|24|3.
a(5) = 24: 1235|4, 1245|3, 124|35, 124|3|5, 125|34, 12|35|4, 1345|2, 134|25, 134|2|5, 13|245, 13|24|5, 135|2|4, 13|2|45, 13|2|4|5, 145|23, 14|235, 14|23|5, 15|234, 1|235|4, 1|245|3, 1|24|35, 1|24|3|5, 1|25|34, 1|2|35|4.
-
b:= proc(n, i, m) option remember; convert(series(
`if`(n=0, 1, add(b(n-1, j, max(m, j))*
`if`(j=i-1, x, 1), j=1..m+1)), x, 2), polynom)
end:
a:= n-> coeff(b(n, 1, 0), x, 1):
seq(a(n), n=3..30);
-
b[n_, i_, m_] := b[n, i, m] = If[n == 0, 1, Sum[b[n - 1, j, Max[m, j]]*If[j == i - 1, x, 1], {j, 1, m + 1}]] + O[x]^2 // Normal;
a[n_] := Coefficient[b[n, 1, 0], x, 1];
Table[a[n], {n, 3, 30}] (* Jean-François Alcover, May 27 2018, translated from Maple *)
A270956
Number of set partitions of [n] having exactly two pairs (m,m+1) such that m+1 is in some block b and m is in block b+1.
Original entry on oeis.org
3, 27, 159, 857, 4726, 27385, 167097, 1071422, 7203162, 50674005, 372321574, 2851766861, 22729523020, 188191920799, 1616005571254, 14370046950779, 132139869946194, 1254871372262202, 12292010800020819, 124053806137088093, 1288543305931949964
Offset: 5
a(5) = 3: 135|24, 13|25|4, 15|24|3.
a(6) = 27: 1246|35, 124|36|5, 126|35|4, 1346|25, 134|26|5, 1356|24, 135|246, 135|24|6, 136|245, 13|246|5, 13|256|4, 13|25|46, 13|25|4|6, 13|26|45, 13|2|46|5, 146|235, 14|236|5, 16|235|4, 156|24|3, 15|246|3, 15|24|36, 15|24|3|6, 16|245|3, 1|246|35, 1|24|36|5, 16|25|34, 1|26|35|4.
A270957
Number of set partitions of [n] having exactly three pairs (m,m+1) such that m+1 is in some block b and m is in block b+1.
Original entry on oeis.org
1, 21, 197, 1421, 9573, 64724, 449567, 3230230, 24053169, 185658621, 1484943532, 12299106220, 105400873263, 933717036862, 8541991253431, 80620086997245, 784225175253212, 7854824886117957, 80933906884404094, 857116366195307414, 9321782438290435408
Offset: 6
a(6) = 1: 136|25|4.
a(7) = 21: 1247|36|5, 1347|26|5, 1357|246, 135|247|6, 137|246|5, 1367|25|4, 136|257|4, 136|25|47, 136|25|4|7, 137|256|4, 13|257|46, 13|25|47|6, 137|26|45, 13|27|46|5, 147|236|5, 157|246|3, 15|247|36, 15|24|37|6, 17|246|35, 1|247|36|5, 17|26|35|4.
A270958
Number of set partitions of [n] having exactly four pairs (m,m+1) such that m+1 is in some block b and m is in block b+1.
Original entry on oeis.org
10, 174, 1783, 15158, 121464, 965616, 7776877, 64017975, 540759958, 4695640591, 41947390960, 385584558062, 3646493831801, 35466401895010, 354594794206614, 3642294128252241, 38413175987708429, 415694601586123128, 4612983463942832627, 52460139965678764835
Offset: 8
a(8) = 10: 1358|247|6, 1368|257|4, 136|258|47, 136|25|48|7, 138|257|46, 13|258|47|6, 138|27|46|5, 158|247|36, 15|248|37|6, 18|247|36|5.
A270959
Number of set partitions of [n] having exactly five pairs (m,m+1) such that m+1 is in some block b and m is in block b+1.
Original entry on oeis.org
4, 127, 1856, 20074, 191967, 1753407, 15845905, 144101608, 1329935983, 12512797900, 120312183453, 1183814298898, 11928314725101, 123117825217659, 1301722909447207, 14096302961791594, 156301760858165116, 1773962132569829592, 20600385809700410195
Offset: 9
a(9) = 4: 1369|258|47, 136|259|48|7, 139|258|47|6, 159|248|37|6.
A270960
Number of set partitions of [n] having exactly six pairs (m,m+1) such that m+1 is in some block b and m is in block b+1.
Original entry on oeis.org
1, 76, 1650, 23031, 264716, 2788215, 28315287, 284453798, 2865664275, 29172005637, 301410662549, 3169264274716, 33967946651067, 371460612845541, 4146934516914449, 47274580420037008, 550357684288267873, 6542615612312034842, 79410538735157560508
Offset: 10
a(10) = 1: 136(10)|259|48|7.
A270961
Number of set partitions of [n] having exactly seven pairs (m,m+1) such that m+1 is in some block b and m is in block b+1.
Original entry on oeis.org
36, 1260, 23258, 324891, 3968251, 45402693, 504270360, 5543886289, 61008463952, 676542685621, 7591571114493, 86426778077884, 999973097589274, 11771498403908062, 141085372337100460, 1722345651885728412, 21421106761851959049, 271444082790121795320
Offset: 12
a(12) = 36: 1358(12)|247(11)|6(10)|9, 1368(12)|257(11)|4(10)|9, 1369(12)|258(11)|47(10), 1369|258(12)|47(11)|(10), 136(12)|258(11)|47(10)|9, 136(10)(12)|259(11)|48|7, 136(10)|259(12)|48(11)|7, 136(10)|259|48(12)|7(11), 136(10)|259|48|7(12)|(11), 136(12)|259(11)|48(10)|7, 136|259(12)|48(11)|7(10), 136|259|48(12)|7(11)|(10), 136(12)|25(11)|48(10)|79, 136|25(12)|48(11)|7(10)|9, 136(12)|25(11)|4(10)|79|8, 138(12)|257(11)|46(10)|9, 139(12)|258(11)|47(10)|6, 139|258(12)|47(11)|6(10), 139|258|47(12)|6(11)|(10), 13(12)|258(11)|47(10)|69, 13|258(12)|47(11)|6(10)|9, 13(12)|25(11)|47(10)|69|8, 138(12)|27(11)|46(10)|59, 138|27(12)|46(11)|5(10)|9, 13(12)|27(11)|46(10)|59|8, 158(12)|247(11)|36(10)|9, 159(12)|248(11)|37(10)|6, 159|248(12)|37(11)|6(10), 159|248|37(12)|6(11)|(10), 15(12)|248(11)|37(10)|69, 15|248(12)|37(11)|6(10)|9, 15(12)|24(11)|37(10)|69|8, 18(12)|247(11)|36(10)|59, 18|247(12)|36(11)|5(10)|9, 1(12)|247(11)|36(10)|59|8, 17(12)|26(11)|35(10)|49|8.
Showing 1-10 of 15 results.
Comments