cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270992 Number of distinct prime divisors of prime(n)+1 and prime(n+1)+1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Michel Marcus, Mar 28 2016

Keywords

Examples

			For n=1, p=2 and q=3; 3 and 4 have no common prime divisor, so a(1)=0.
For n=2, p=3 and q=5; 4 and 6 have 1 common prime divisor, so a(2)=1.
For n=9, p=23 and q=29; 24 and 30 have 2 common prime divisors, so a(9)=2.
		

Crossrefs

Cf. A008335, A270592 (records).

Programs

  • Mathematica
    Table[Length[Map[First, FactorInteger[GCD @@ {Prime@ n + 1, Prime[n + 1] + 1}]] /. 1 -> Nothing], {n, 101}] (* Michael De Vlieger, Mar 28 2016 *)
    Length[Intersection[FactorInteger[#[[1]]+1][[All,1]],FactorInteger[#[[2]] + 1][[All,1]]]]&/@Partition[Prime[Range[120]],2,1] (* Harvey P. Dale, Jun 11 2017 *)
  • PARI
    lista(nn) = {p = 2; f = factor(p+1)[,1]~; forprime(q=3, nn, g = factor(q+1)[,1]~; print1(#setintersect(f, g), ", "); p = q; f = g;);}
    
  • PARI
    a(n) = my(p = prime(n), q = nextprime(p+1)); #setintersect(factor(p+1)[,1]~, factor(q+1)[,1]~);