A270997 Numbers k such that k | A006190(k-1).
1, 3, 10, 17, 23, 29, 33, 43, 53, 61, 79, 101, 103, 107, 113, 127, 131, 139, 157, 173, 179, 181, 191, 199, 211, 233, 251, 257, 263, 269, 277, 283, 311, 313, 337, 347, 367, 373, 385, 389, 419, 433, 439, 443, 467, 491, 503, 521, 523, 547, 561, 563, 569, 571, 599, 601, 607, 641, 647, 649, 653, 659
Offset: 1
Keywords
Examples
10 is a term because A006190(9) = 12970 is divisible by 10.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
M:= <<3,1>|<1,0>>: filter:= proc(n) uses LinearAlgebra[Modular]; local A; A:= Mod(n,M,integer); MatrixPower(n,A,n-1)[1,2]=0 end proc: filter(1):= true: select(filter, [$1..659]); # Robert Israel, Jun 03 2019
-
Mathematica
nn = 660; s = LinearRecurrence[{3, 1}, {0, 1}, nn]; Select[Range@ nn, Divisible[s[[#]], #] &](* Michael De Vlieger, Mar 28 2016, after Harvey P. Dale at A006190 *)
-
PARI
a006190(n) = ([1, 3; 1, 2]^n)[2, 1]; for(n=1, 1e3, if(Mod(a006190(n-1), n) == 0, print1(n, ", ")));
Comments