A270999 Table read by rows: list of prime 5-tuples of the form (p, p+4, p+6, p+10, p+12).
7, 11, 13, 17, 19, 97, 101, 103, 107, 109, 1867, 1871, 1873, 1877, 1879, 3457, 3461, 3463, 3467, 3469, 5647, 5651, 5653, 5657, 5659, 15727, 15731, 15733, 15737, 15739, 16057, 16061, 16063, 16067, 16069, 19417, 19421, 19423, 19427, 19429, 43777, 43781, 43783, 43787, 43789
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..5665
- C. K. Caldwell, Top Twenty page, Quintuplet
- Eric Weisstein's World of Mathematics, Prime Constellation
- Wikipedia, Prime quadruplet
- Index entries for primes, gaps between
Programs
-
MATLAB
Primes = primes(2*10^8); T12 = find(Primes(5:end) - Primes(1:end-4)==12); T4 = find(Primes(2:end) - Primes(1:end-1)==4); T = intersect(T4,T12); Primes(reshape([T;T+1;T+2;T+3;T+4],5*numel(T),1)) % Robert Israel, Jul 14 2016
-
Magma
lst:=[]; for p in [5..43777 by 2] do if p le 7 xor p mod 210 in {97, 187} then if IsPrime(p) then t:=[c: c in [p+4..p+12] | IsPrime(c)]; if #t eq 4 then lst:=lst cat [p] cat t; end if; end if; end if; end for; lst;
-
Maple
Primes:= select(isprime, [seq(i,i=3..10^5,2)]): T:= select(t -> Primes[t+4]-Primes[t]=12 and Primes[t+1]-Primes[t]=4, [$1..nops(Primes)-5]): seq(seq(Primes[t+j],j=0..4),t=T); # Robert Israel, Jul 13 2016
-
Mathematica
m = {0, 4, 6, 10, 12}; Union@ Flatten@ Map[# + m &, Select[Prime@ Range[10^4], Times @@ Boole@ PrimeQ[# + m] == 1 &]] (* Michael De Vlieger, Jul 13 2016 *) Select[Partition[Prime[Range[4600]],5,1],Differences[#]=={4,2,4,2}&]//Flatten (* Harvey P. Dale, Jun 15 2025 *)
Formula
a(5*n-4) = A022007(n).
Comments