cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271040 Number of different 3 against 3 matches given n players.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 10, 70, 280, 840, 2100, 4620, 9240, 17160, 30030, 50050, 80080, 123760, 185640, 271320, 387600, 542640, 746130, 1009470, 1345960, 1771000, 2302300, 2960100, 3767400, 4750200, 5937750, 7362810, 9061920, 11075680, 13449040, 16231600, 19477920
Offset: 0

Views

Author

Elliott Line, Mar 29 2016

Keywords

Comments

Given n players there are a(n) different ways of arranging those players in a 3 against 3 contest.
Number of ways to select two disjoint subsets of size 3 from a set of n elements. - Joerg Arndt, Mar 29 2016

Examples

			When there are 6 players, there are 10 different 3 against 3 matches that can be played: ABC v DEF, ABD v CEF, ABE v CDF, ABF v CDE, ACD v BEF, ACE v BDF, ACF v BDE, ADE v BCF, ADF v BCE, AEF v BCD.
		

Crossrefs

Cf. A050534, the analogous situation for 2 against 2 matches.

Programs

  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,0,0,0,10},40] (* Harvey P. Dale, Sep 17 2016 *)
  • PARI
    concat(vector(6), Vec(10*x^6/(1-x)^7 + O(x^50))) \\ Colin Barker, Mar 29 2016
    
  • PARI
    a(n)=binomial(n,3)*binomial(n-3,3)/2 \\ Charles R Greathouse IV, May 22 2018

Formula

a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)/72.
a(n) = binomial(n,3) * binomial(n-3,3) / 2. - Joerg Arndt, Mar 29 2016
From Colin Barker, Mar 29 2016: (Start)
a(n) = 10*A000579(n).
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7) for n>6.
G.f.: 10*x^6 / (1-x)^7.
(End)