A271040 Number of different 3 against 3 matches given n players.
0, 0, 0, 0, 0, 0, 10, 70, 280, 840, 2100, 4620, 9240, 17160, 30030, 50050, 80080, 123760, 185640, 271320, 387600, 542640, 746130, 1009470, 1345960, 1771000, 2302300, 2960100, 3767400, 4750200, 5937750, 7362810, 9061920, 11075680, 13449040, 16231600, 19477920
Offset: 0
Examples
When there are 6 players, there are 10 different 3 against 3 matches that can be played: ABC v DEF, ABD v CEF, ABE v CDF, ABF v CDE, ACD v BEF, ACE v BDF, ACF v BDE, ADE v BCF, ADF v BCE, AEF v BCD.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 9.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Cf. A050534, the analogous situation for 2 against 2 matches.
Programs
-
Mathematica
LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,0,0,0,10},40] (* Harvey P. Dale, Sep 17 2016 *)
-
PARI
concat(vector(6), Vec(10*x^6/(1-x)^7 + O(x^50))) \\ Colin Barker, Mar 29 2016
-
PARI
a(n)=binomial(n,3)*binomial(n-3,3)/2 \\ Charles R Greathouse IV, May 22 2018
Formula
a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)/72.
a(n) = binomial(n,3) * binomial(n-3,3) / 2. - Joerg Arndt, Mar 29 2016
From Colin Barker, Mar 29 2016: (Start)
a(n) = 10*A000579(n).
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7) for n>6.
G.f.: 10*x^6 / (1-x)^7.
(End)
Comments