A297846
Primes p such that p is the largest member of a Wieferich tuple.
Original entry on oeis.org
71, 359, 487, 863, 1069, 1093, 1483, 1549, 2281, 3511, 4871, 6451, 6733, 7393, 12049, 13691, 14107, 14149, 15377, 17401, 18787, 20771, 29573, 32933, 35747, 39233, 44483, 46021, 48947, 49559, 54787, 54979, 59197, 60493, 69401, 69653, 77263, 77867, 105323, 122327
Offset: 1
The primes 31, 79, 251, 263, 421 and 1483 satisfy 31^(79-1) == 1 (mod 79^2), 79^(263-1) == 1 (mod 263^2), 263^(251-1) == 1 (mod 251^2), 251^(421-1) == 1 (mod 421^2), 421^(1483-1) == 1 (mod 1483^2) and 1483^(31-1) == 1 (mod 31^2), so those primes form a Wieferich tuple. Since 1483 is the largest member of the tuple, 1483 is a term of the sequence.
Supersequence of column 1 of
A271100.
-
findwiefs(vec, lim) = my(v=[]); for(k=1, #vec, forprime(p=1, lim, if(Mod(vec[k], p^2)^(p-1)==1, v=concat(v, [p])))); vecsort(v, , 8)
newprimes(v, w) = setminus(w, v)
is(n) = my(v=findwiefs([n], n), w=[], np=[]); while(1, w=findwiefs(v, n); if(newprimes(v, w)==[], return(0), if(setsearch(vecsort(newprimes(v, w)), n) > 0, return(1))); v=concat(v, newprimes(v, w)); v=vecsort(v, , 8))
forprime(p=1, , if(is(p), print1(p, ", ")))
A317721
Irregular array T(n, k) read by rows, where row n lists the members of n-th Wieferich tuple. Rows are arranged first by size of largest term, then by increasing length of row, then in lexicographic order.
Original entry on oeis.org
71, 3, 11, 359, 3, 11, 71, 331, 359, 307, 3, 11, 71, 331, 359, 307, 19, 3, 11, 71, 331, 487, 11, 71, 331, 359, 307, 487, 3, 11, 71, 331, 359, 307, 863, 23, 13, 863, 3, 11, 71, 331, 359, 23, 13, 863, 3, 11, 71, 331, 359, 307, 19, 13, 863, 467, 3, 11, 71, 331
Offset: 1
Irregular array starts as follows:
71, 3, 11;
359, 3, 11, 71, 331;
359, 307, 3, 11, 71, 331;
359, 307, 19, 3, 11, 71, 331;
487, 11, 71, 331, 359, 307;
487, 3, 11, 71, 331, 359, 307;
863, 23, 13;
863, 3, 11, 71, 331, 359, 23, 13;
863, 3, 11, 71, 331, 359, 307, 19, 13;
863, 467, 3, 11, 71, 331, 359, 23, 13;
863, 3, 11, 71, 331, 359, 307, 487, 23, 13;
863, 467, 3, 11, 71, 331, 359, 307, 19, 13;
...
The tuple 359, 3, 11, 71, 331 is a row of the array, because its members satisfy 359^(3-1) == 1 (mod 3^2), 3^(11-1) == 1 (mod 11^2), 11^(71-1) == 1 (mod 71^2), 71^(331-1) == 1 (mod 331^2) and 331^(359-1) == 1 (mod 359^2).
Cf.
A271100 (terms of first row of length n),
A297846 (distinct terms of column 1 of T),
A317919 (number of rows of T with the same largest element),
A317920 (length of row n of T).
-
addtovec(vec) = my(w=[], vmax=0); for(t=1, #vec, if(vecmax(vec[t]) > vmax, vmax=vecmax(vec[t]))); for(k=1, #vec, forprime(q=1, vmax, if(Mod(vec[k][#vec[k]], q^2)^(q-1)==1, w=concat(w, [0]); w[#w]=concat(vec[k], [q])))); w
removefromvec(vec) = my(w=[]); for(k=1, #vec, if(vecsort(vec[k])==vecsort(vec[k], , 8), w=concat(w, [0]); w[#w]=vec[k])); w
printfromvec(vec) = for(k=1, #vec, if(vec[k][1]==vec[k][#vec[k]], for(t=1, #vec[k]-1, print1(vec[k][t], ", ")); print("")))
forprime(p=1, , my(v=[[p]]); while(#v > 0, v=addtovec(v); printfromvec(v); v=removefromvec(v)))
A289899
Primes that are the largest member of a Wieferich cycle.
Original entry on oeis.org
71 is a term, since A039951(71) = 3, A039951(3) = 11 and A039951(11) = 71, so {3, 11, 71} is a Wieferich cycle of length 3 and 71 is the largest member of that cycle.
-
leastwieferich(base, bound) = forprime(p=1, bound, if(Mod(base, p^2)^(p-1)==1, return(p))); 0
is(n) = my(v=[leastwieferich(n, n)]); while(1, if(v[#v]==0, return(0), v=concat(v, leastwieferich(v[#v], n))); my(x=#v-1); while(x > 1, if(v[#v]==v[x], if(n==vecmax(v), return(1), return(0))); x--))
forprime(p=1, , if(is(p), print1(p, ", ")))
Showing 1-3 of 3 results.
Comments