A271105 Square 1000-gonal numbers (or square chiliagonal numbers): numbers that are square and chiliagonal (or 1000-gonal).
1, 2504902401, 168859192076889601, 241636344867909601, 16289064572957666645861601, 1098070014289567941239426235218401, 1571330653655890087598658185258401, 105925731068562297456560368093353713060001, 7140610715067574113911463073574478824869628906401
Offset: 1
Examples
2504902401 is in the sequence because 50049^2 = 2504902401 and the 2241th 1000-gonal number is 2504902401. - _Colin Barker_, Mar 31 2016
Links
- Colin Barker, Table of n, a(n) for n = 1..190
- M. A. Asiru, All square chiliagonal numbers, Int J Math Edu Sci Technol, 47:7(2016), 1123-1134.
- Index entries for linear recurrences with constant coefficients, signature (1,0,6502873789598402,-6502873789598402,0,-1,1).
Programs
-
GAP
g:=1000; Q0:=(g-4)^2; D1:=2*g-4; S:=[ 2*[ 500, 1 ], 4*[ 1022201, 22880 ], 498*[ 8980, 201 ], 996*[ 1, 0 ], -2*[- 500, 1 ], -4*[- 1022201, 22880 ]];; Length(S); S1:=Filtered(S,i->IsInt((i[1]+g-4)/(2*g-4)));; Length(S1); #3 S2:=Filtered([1..Length(S)],i->IsInt((S[i][1]+g-4)/(2*g-4)));; Length(S2); #3 [ 1, 3, 5 ] S3:=List(S2,i->S[i]);; Length(S3); #3 u:=40320199;; v:=902490;; G:=[[u,2*(g-2)*v],[v,u]];; A:=List([1..Length(S3)],s->List(List([0..11],i->G^i*TransposedMat([S3[s]])),Concatenation));; Length(A); D1:=Union(List([1..Length(A)],k->A[k]));; Length(D1); D2:=List(D1,i-> [(i[1]+(g-4))/(2*(g-2)),i[2]/2] );; Length(D2); D3:=Filtered(D2,i->IsInt(i[1]));; Length(D3); D4:=List(D3,i->i[2]^2);; Length(D4); D5:=Set(D4);; Length(D5);
-
Mathematica
Rest@ CoefficientList[Series[x (1 + 2504902400 x + 168859189571987200 x^2 + 66274279001421598 x^3 + 168859189571987200 x^4 + 2504902400 x^5 + x^6)/((1 - x) (1 - 6502873789598402 x^3 + x^6)), {x, 0, 8}], x] (* Michael De Vlieger, Mar 31 2016 *)
-
PARI
Vec(x*(1 +2504902400*x +168859189571987200*x^2 +66274279001421598*x^3 +168859189571987200*x^4 +2504902400*x^5+x^6) / ((1 -x)*(1 -6502873789598402*x^3 +x^6)) + O(x^10)) \\ Colin Barker, Mar 31 2016
Formula
G.f.: x*(1 +2504902400*x +168859189571987200*x^2 +66274279001421598*x^3 +168859189571987200*x^4 +2504902400*x^5+x^6) / ((1 -x)*(1 -6502873789598402*x^3 +x^6)). - Colin Barker, Mar 31 2016
a(n) = (A271115(n))^2. - Muniru A Asiru, Apr 10 2016
Extensions
More terms from Colin Barker, Mar 31 2016
Comments