cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A195163 1000-gonal numbers: a(n) = n*(499*n - 498).

Original entry on oeis.org

0, 1, 1000, 2997, 5992, 9985, 14976, 20965, 27952, 35937, 44920, 54901, 65880, 77857, 90832, 104805, 119776, 135745, 152712, 170677, 189640, 209601, 230560, 252517, 275472, 299425, 324376, 350325, 377272, 405217, 434160, 464101, 495040, 526977, 559912, 593845, 628776
Offset: 0

Views

Author

Kausthub Gudipati, Sep 10 2011

Keywords

Comments

a(A271470(n)) is a perfect square. In fact, a(A271470(n)) = A271105(n) if the first term of a(n) is 1. - Muniru A Asiru, Apr 10 2016

Crossrefs

Programs

Formula

a(n) = 998*n*(n-1)/2 + n, according to the common formula for s-gonal numbers, a(n) = (s-2)*n*(n-1)/2 + n. - Sergey Pavlov, Aug 14 2015
G.f.: x*(1+997*x)/(1-x)^3. - R. J. Mathar, Sep 12 2011
E.g.f.: exp(x)*x*(1 + 499*x). - Ilya Gutkovskiy, Apr 10 2016
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 4. - Muniru A Asiru, Sep 12 2017

A271470 a(n)-th chiliagonal (or 1000-gonal) number is square.

Original entry on oeis.org

1, 2241, 18395521, 22005481, 180674890281, 1483422094617961, 1774530705782041, 14569695060825930201, 119623748111985974353561, 143098862377484625247441, 1174906008443637039413730321, 9646506658002296058866816899921, 11539549215467584644303744700081
Offset: 1

Views

Author

Muniru A Asiru, Apr 08 2016

Keywords

Comments

a(n) is odd since a(n) mod 10 = A000012(n). Since all odd numbers with one or two distinct prime factors are deficient, a(n) is deficient. E.g., 18399811 = sigma(a(3)) < 2*a(3) = 36791042. - Muniru A Asiru, Nov 17 2016
The digital root of a(n) is always 1, 4, 7 or 9. - Muniru A Asiru, Nov 29 2016

Examples

			a(2)=2241.
The 2241st chiliagonal number is a square because 2241*(499*2241 - 498) = 2504902401 = (A271115(2))^2 = A271105(2);
the 22005481st chiliagonal number is a square because 22005481*(499*22005481 - 498) = (A271115(4))^2 = A271105(4).
		

Crossrefs

Programs

  • GAP
    g:=1000;
    S:=[2*[ 500, 1 ], 4*[ 1022201, 22880 ], 498*[ 8980, 201 ], 996*[ 1, 0 ],-2*[- 500, 1 ], -4*[- 1022201, 22880 ]];;      Length(S);
    u:=40320199;;   v:=902490;;   G:=[[u,2*(g-2)*v],[v,u]];;
    A:=List([1..Length(S)],s->List(List([0..6],i->G^i*TransposedMat([S[s]])),Concatenation));; Length(A);
    D1:=Union(List([1..Length(A)],k->A[k]));; Length(D1);
    D2:=List(D1,i-> [(i[1]+(g-4))/(2*(g-2)),i[2]/2] );;
    D3:=Filtered(D2,i->IsInt(i[1]));
    D4:=Filtered(D3,i->i[2]>0);
    D5:=List(D4,i->i[1]); # chiliagonal (or 1000-gonal) number is square
    
  • PARI
    Vec(x*(1+2240*x+18393280*x^2-77030438*x^3+18393280*x^4+2240*x^5+x^6)/((1-x)*(1-80640398*x^3+x^6)) + O(x^50)) \\ Colin Barker, Apr 09 2016

Formula

a(n)*(499*a(n)-498) = (A271115(n))^2 = A271105(n).
a(n) = 80640398*a(n-3) - a(n-6) - 40239396, for n>6.
a(n) = 40320199*a(n-3) + 1804980*A271115(n-3) - 20119698, for n>3. - Muniru A Asiru, Apr 09 2016
G.f.: x*(1+2240*x+18393280*x^2-77030438*x^3+18393280*x^4+2240*x^5+x^6) / ((1-x)*(1-80640398*x^3+x^6)). - Colin Barker, Apr 09 2016

Extensions

More terms from Colin Barker, Apr 09 2016

A271115 Numbers whose square is a chiliagonal (or 1000-gonal) number.

Original entry on oeis.org

1, 50049, 410924801, 491565199, 4035971329551, 33137139500710799, 39640013290309201, 325462334331581751249, 2672192117918839703333201, 3196586448455823020136799, 26245412174507812354285027551, 215486635921438132237851754543199
Offset: 1

Views

Author

Muniru A Asiru, Mar 31 2016

Keywords

Comments

a(n) is odd since a(n) mod 10 = 1 or 9. Since all odd numbers with one or two distinct prime factors are deficient, a(n) is deficient. E.g., 7294309908480 = sigma(a(5)) < 2*a(5) = 8071942659102. - Muniru A Asiru, Nov 17 2016
The digital root of a(3*n) is A131598(n-1). - Muniru A Asiru, Dec 01 2016

Examples

			50049 is in the sequence because 50049^2 = 2504902401, which is the 2241st 1000-gonal number. - _Colin Barker_, Apr 01 2016
		

Crossrefs

Programs

  • GAP
    g:=1000; Q0:=(g-4)^2; D1:=2*g-4;
    S:=[2*[ 500, 1 ], 4*[ 1022201, 22880 ], 498*[ 8980, 201 ], 996*[ 1, 0 ],-2*[- 500, 1 ], -4*[- 1022201, 22880 ]];;
    S1:=Filtered(S,i->IsInt((i[1]+g-4)/(2*g-4)));;
    S2:=Filtered([1..Length(S)],i->IsInt((S[i][1]+g-4)/(2*g-4)));;
    S3:=List(S2,i->S[i]);;
    u:=40320199;;   v:=902490;;   G:=[[u,2*(g-2)*v],[v,u]];;
    A:=List([1..Length(S3)],s->List(List([0..6],i->G^i*TransposedMat([S3[s]])),Concatenation));; Length(A);
    D1:=Union(List([1..Length(A)],k->A[k]));; Length(D1);
    D2:=List(D1,i-> [(i[1]+(g-4))/(2*(g-2)),i[2]/2] );; Length(D2);
    D3:=Filtered(D2,i->IsInt(i[1]));
    D4:=Filtered(D3,i->i[2]>0);
    D5:=List(D4,i->i[2]); # indices of square numbers for square 1000 gonal numbers (or square chiliagonal numbers)
  • Mathematica
    Rest@ CoefficientList[Series[x (1 + x) (1 + 50048 x + 410874753 x^2 + 50048 x^3 + x^4)/(1 - 80640398 x^3 + x^6), {x, 0, 12}], x] (* Michael De Vlieger, Apr 01 2016 *)
    LinearRecurrence[{0,0,80640398,0,0,-1},{1,50049,410924801,491565199,4035971329551,33137139500710799},20] (* Harvey P. Dale, Sep 01 2025 *)
  • PARI
    Vec(x*(1+x)*(1+50048*x+410874753*x^2+50048*x^3+x^4)/(1-80640398*x^3+x^6) + O(x^15)) /* Colin Barker, Apr 01 2016 */
    

Formula

a(n)^2 = A271105(n).
a(n) = 80640398*a(n-3)-a(n-6) for n>6. - Colin Barker, Apr 01 2016
G.f.: x*(1+x)*(1+50048*x+410874753*x^2+50048*x^3+x^4) / (1-80640398*x^3+x^6). - Colin Barker, Apr 01 2016
a(n) = 40320199*a(n-3) + 900685020*A271470(n-3) - 449440020 for n>3. - Muniru A Asiru, Apr 09 2016
A010888(a(3*n)) = A131598(n-1) where A131598 has period 3: repeat [2, 5, 8] and A010888 is digital root. - Michel Marcus, Dec 04 2014

Extensions

Merged with identical sequence submitted by Colin Barker, Apr 01 2016. - N. J. A. Sloane, Apr 06 2016
Showing 1-3 of 3 results.