cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A271105 Square 1000-gonal numbers (or square chiliagonal numbers): numbers that are square and chiliagonal (or 1000-gonal).

Original entry on oeis.org

1, 2504902401, 168859192076889601, 241636344867909601, 16289064572957666645861601, 1098070014289567941239426235218401, 1571330653655890087598658185258401, 105925731068562297456560368093353713060001, 7140610715067574113911463073574478824869628906401
Offset: 1

Views

Author

Muniru A Asiru, Mar 30 2016

Keywords

Comments

a(n) is a number that is a square and a chiliagon. A chiliagon is a polygon with 1000 sides.
Each a(n) ends with digit 1. The remainder of the division of a(n) by 5 is 1.
The remainder of the division of a(n) by 9 is the periodic sequence: 1, 0, 4, 7, 0, 7, 4, 0, 1 of period 9. - Muniru A Asiru, Apr 10 2016
a(n) is odd since a(n) mod 10 = A000012(n). Since all odd numbers with one or two distinct prime factors are deficient, a(n) is deficient. E.g., 3844891281 = sigma(a(2)) < 2*a(2) = 5009804802. - Muniru A Asiru, Nov 17 2016
The digital root of a(n) is always 1, 4, 7 or 9. - Muniru A Asiru, Nov 29 2016

Examples

			2504902401 is in the sequence because 50049^2 = 2504902401 and the 2241th 1000-gonal number is 2504902401. - _Colin Barker_, Mar 31 2016
		

Crossrefs

Cf. A000290 (square), A195163 (1000-gonal).

Programs

  • GAP
    g:=1000; Q0:=(g-4)^2; D1:=2*g-4;
    S:=[
    2*[ 500, 1 ],
    4*[ 1022201, 22880 ],
    498*[ 8980, 201 ],
    996*[ 1, 0 ],
    -2*[- 500, 1 ],
    -4*[- 1022201, 22880 ]];;      Length(S);
    S1:=Filtered(S,i->IsInt((i[1]+g-4)/(2*g-4)));; Length(S1);  #3
    S2:=Filtered([1..Length(S)],i->IsInt((S[i][1]+g-4)/(2*g-4)));; Length(S2);  #3  [ 1, 3, 5 ]
    S3:=List(S2,i->S[i]);; Length(S3); #3
    u:=40320199;;   v:=902490;;   G:=[[u,2*(g-2)*v],[v,u]];;
    A:=List([1..Length(S3)],s->List(List([0..11],i->G^i*TransposedMat([S3[s]])),Concatenation));; Length(A);
    D1:=Union(List([1..Length(A)],k->A[k]));; Length(D1);
    D2:=List(D1,i-> [(i[1]+(g-4))/(2*(g-2)),i[2]/2] );; Length(D2);
    D3:=Filtered(D2,i->IsInt(i[1]));;  Length(D3);
    D4:=List(D3,i->i[2]^2);;  Length(D4);
    D5:=Set(D4);;  Length(D5);
    
  • Mathematica
    Rest@ CoefficientList[Series[x (1 + 2504902400 x + 168859189571987200 x^2 + 66274279001421598 x^3 + 168859189571987200 x^4 + 2504902400 x^5 + x^6)/((1 - x) (1 - 6502873789598402 x^3 + x^6)), {x, 0, 8}], x] (* Michael De Vlieger, Mar 31 2016 *)
  • PARI
    Vec(x*(1 +2504902400*x +168859189571987200*x^2 +66274279001421598*x^3 +168859189571987200*x^4 +2504902400*x^5+x^6) / ((1 -x)*(1 -6502873789598402*x^3 +x^6)) + O(x^10)) \\ Colin Barker, Mar 31 2016

Formula

G.f.: x*(1 +2504902400*x +168859189571987200*x^2 +66274279001421598*x^3 +168859189571987200*x^4 +2504902400*x^5+x^6) / ((1 -x)*(1 -6502873789598402*x^3 +x^6)). - Colin Barker, Mar 31 2016
a(n) = A271470(n)*(499*A271470(n)-498). - Muniru A Asiru, Apr 10 2016
a(n) = (A271115(n))^2. - Muniru A Asiru, Apr 10 2016

Extensions

More terms from Colin Barker, Mar 31 2016

A271115 Numbers whose square is a chiliagonal (or 1000-gonal) number.

Original entry on oeis.org

1, 50049, 410924801, 491565199, 4035971329551, 33137139500710799, 39640013290309201, 325462334331581751249, 2672192117918839703333201, 3196586448455823020136799, 26245412174507812354285027551, 215486635921438132237851754543199
Offset: 1

Views

Author

Muniru A Asiru, Mar 31 2016

Keywords

Comments

a(n) is odd since a(n) mod 10 = 1 or 9. Since all odd numbers with one or two distinct prime factors are deficient, a(n) is deficient. E.g., 7294309908480 = sigma(a(5)) < 2*a(5) = 8071942659102. - Muniru A Asiru, Nov 17 2016
The digital root of a(3*n) is A131598(n-1). - Muniru A Asiru, Dec 01 2016

Examples

			50049 is in the sequence because 50049^2 = 2504902401, which is the 2241st 1000-gonal number. - _Colin Barker_, Apr 01 2016
		

Crossrefs

Programs

  • GAP
    g:=1000; Q0:=(g-4)^2; D1:=2*g-4;
    S:=[2*[ 500, 1 ], 4*[ 1022201, 22880 ], 498*[ 8980, 201 ], 996*[ 1, 0 ],-2*[- 500, 1 ], -4*[- 1022201, 22880 ]];;
    S1:=Filtered(S,i->IsInt((i[1]+g-4)/(2*g-4)));;
    S2:=Filtered([1..Length(S)],i->IsInt((S[i][1]+g-4)/(2*g-4)));;
    S3:=List(S2,i->S[i]);;
    u:=40320199;;   v:=902490;;   G:=[[u,2*(g-2)*v],[v,u]];;
    A:=List([1..Length(S3)],s->List(List([0..6],i->G^i*TransposedMat([S3[s]])),Concatenation));; Length(A);
    D1:=Union(List([1..Length(A)],k->A[k]));; Length(D1);
    D2:=List(D1,i-> [(i[1]+(g-4))/(2*(g-2)),i[2]/2] );; Length(D2);
    D3:=Filtered(D2,i->IsInt(i[1]));
    D4:=Filtered(D3,i->i[2]>0);
    D5:=List(D4,i->i[2]); # indices of square numbers for square 1000 gonal numbers (or square chiliagonal numbers)
  • Mathematica
    Rest@ CoefficientList[Series[x (1 + x) (1 + 50048 x + 410874753 x^2 + 50048 x^3 + x^4)/(1 - 80640398 x^3 + x^6), {x, 0, 12}], x] (* Michael De Vlieger, Apr 01 2016 *)
    LinearRecurrence[{0,0,80640398,0,0,-1},{1,50049,410924801,491565199,4035971329551,33137139500710799},20] (* Harvey P. Dale, Sep 01 2025 *)
  • PARI
    Vec(x*(1+x)*(1+50048*x+410874753*x^2+50048*x^3+x^4)/(1-80640398*x^3+x^6) + O(x^15)) /* Colin Barker, Apr 01 2016 */
    

Formula

a(n)^2 = A271105(n).
a(n) = 80640398*a(n-3)-a(n-6) for n>6. - Colin Barker, Apr 01 2016
G.f.: x*(1+x)*(1+50048*x+410874753*x^2+50048*x^3+x^4) / (1-80640398*x^3+x^6). - Colin Barker, Apr 01 2016
a(n) = 40320199*a(n-3) + 900685020*A271470(n-3) - 449440020 for n>3. - Muniru A Asiru, Apr 09 2016
A010888(a(3*n)) = A131598(n-1) where A131598 has period 3: repeat [2, 5, 8] and A010888 is digital root. - Michel Marcus, Dec 04 2014

Extensions

Merged with identical sequence submitted by Colin Barker, Apr 01 2016. - N. J. A. Sloane, Apr 06 2016

A261276 100-gonal numbers: a(n) = 98*n*(n-1)/2 + n.

Original entry on oeis.org

0, 1, 100, 297, 592, 985, 1476, 2065, 2752, 3537, 4420, 5401, 6480, 7657, 8932, 10305, 11776, 13345, 15012, 16777, 18640, 20601, 22660, 24817, 27072, 29425, 31876, 34425, 37072, 39817, 42660, 45601, 48640, 51777, 55012, 58345, 61776, 65305, 68932, 72657, 76480
Offset: 0

Views

Author

Sergey Pavlov, Aug 13 2015

Keywords

Comments

According to the common formula for the polygonal numbers: (s-2)*n*(n-1)/2 + n (here s = 100).

Crossrefs

Programs

  • GAP
    A261276:=List([0..10^2],n->(98*n*(n-1))/2 + n); # Muniru A Asiru, Sep 27 2017
  • JavaScript
    function a(n){return 98*n*(n-1)/2+n}
    
  • Maple
    A261276:=seq((98*n*(n-1))/2 + n,n=0..10^2); # Muniru A Asiru, Sep 27 2017
  • Mathematica
    Table[n (49 n - 48), {n, 0, 40}] (* Bruno Berselli, Aug 20 2015 *)
    PolygonalNumber[100,Range[0,40]] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{3,-3,1},{0,1,100},50] (* Harvey P. Dale, Jan 04 2019 *)
  • PARI
    first(m)=vector(m,i,i--;98*i*(i-1)/2 + i) \\ Anders Hellström, Aug 20 2015
    

Formula

a(n) = n*(49*n - 48).
G.f.: x*(1+97*x)/(1-x)^3. [Bruno Berselli, Aug 20 2015]
E.g.f.: exp(x)*(x + 49*x^2). - Nikolaos Pantelidis, Feb 12 2023
Showing 1-3 of 3 results.