cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A187795 Sum of the abundant divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 18, 0, 20, 0, 0, 0, 36, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 66, 0, 0, 0, 60, 0, 42, 0, 0, 0, 0, 0, 84, 0, 0, 0, 0, 0, 72, 0, 56, 0, 0, 0, 122, 0, 0, 0, 0, 0, 66, 0, 0, 0, 70, 0, 162, 0, 0, 0, 0, 0, 78, 0, 140, 0, 0, 0, 138, 0, 0, 0, 88, 0, 138, 0, 0, 0, 0, 0, 180
Offset: 1

Views

Author

Timothy L. Tiffin, Jan 06 2013

Keywords

Comments

Sum of divisors d of n with sigma(d) > 2*d.
a(n) = n when n is a primitive abundant number (A091191). - Alonso del Arte, Jan 19 2013

Examples

			a(12) = 12 because the divisors of 12 are 1, 2, 3, 4, 6, 12, but of those only 12 is abundant.
a(13) = 0 because the divisors of 13 are 1 and 13, neither of which is abundant.
		

Crossrefs

Programs

  • Maple
    A187795 := proc(n)
        local a,d;
        a :=0 ;
        for d in numtheory[divisors](n) do
            if numtheory[sigma](d) > 2* d then
                a := a+d ;
            end if;
        end do:
        return a;
    end proc:
    seq(A187795(n),n=1..100) ; # R. J. Mathar, Apr 27 2017
  • Mathematica
    Table[Total@ Select[Divisors@ n, DivisorSigma[1, #] > 2 # &], {n, 96}] (* Michael De Vlieger, Jul 16 2016 *)
  • PARI
    a(n)=sumdiv(n,d,(sigma(d,-1)>2)*d) \\ Charles R Greathouse IV, Jan 15 2013
    
  • Python
    from sympy import divisors, divisor_sigma
    def A187795(n): return sum(d for d in divisors(n,generator=True) if divisor_sigma(d) > 2*d) # Chai Wah Wu, Sep 22 2021

Formula

From Antti Karttunen, Nov 14 2017: (Start)
a(n) = Sum_{d|n} A294937(d)*d.
a(n) = A294889(n) + (A294937(n)*n).
If A294889(n) > 0, then a(n) = A294889(n)+n, otherwise a(n) = A294930(n)*n.
a(n) + A187794(n) + A187793(n) = A000203(n).
(End)

A283550 Numbers that are not the sum of abundant numbers (not necessarily distinct).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 37, 39, 41, 43, 45, 46, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107
Offset: 1

Views

Author

Amiram Eldar, Mar 10 2017

Keywords

Comments

a(496) = 991 is the last term.
Subsequence of A048242 (Numbers that are not the sum of two abundant numbers).
Giovanni Resta noticed that 991 is the largest number that is not a sum of abundant numbers.

Examples

			20161 = 12 + 304 + 19845 is the sum of 3 abundant numbers and thus not in the sequence (although it is in A048242, since it is not the sum of 2 abundant numbers).
		

Crossrefs

Programs

  • Mathematica
    AbundantQ[n_] := DivisorSigma[1, n] > 2 n; a = Select[Range[1000], AbundantQ[#] &]; nn = Dimensions[a][[1]]; t = Rest[CoefficientList[ Series[Product[(1 + x^a[[k]]), {k, nn}], {x, 0, a[[-1]]}], x]]; f = Flatten[Position[t, 0]]
Showing 1-2 of 2 results.