cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271176 Expansion of -(4*x^3-7*x^2+4*x-1)/(2*x^4-5*x^3+8*x^2-5*x+1).

Original entry on oeis.org

1, 1, 4, 13, 36, 94, 239, 597, 1471, 3586, 8669, 20818, 49726, 118259, 280239, 662117, 1560516, 3670321, 8617584, 20203698, 47308391, 110659649, 258614439, 603929562, 1409413761, 3287385206, 7664034874, 17860302403
Offset: 0

Views

Author

Vladimir Kruchinin, Apr 01 2016

Keywords

Crossrefs

Cf. A034008.

Programs

  • Mathematica
    Table[(n + 1) Sum[Sum[(Binomial[i + k, i] 2^i Binomial[2 k + 2, n - i - k] (-1)^(n - i - k))/(k + 1), {i, 0, n - k}], {k, 0, n}], {n, 0, 27}] (* or *)
    CoefficientList[Series[-(4 x^3 - 7 x^2 + 4 x - 1)/(2 x^4 - 5 x^3 + 8 x^2 - 5 x + 1), {x, 0, 27}], x] (* Michael De Vlieger, Apr 01 2016 *)
    LinearRecurrence[{5,-8,5,-2},{1,1,4,13},30] (* Harvey P. Dale, Jan 19 2021 *)
  • Maxima
    a(n):=(n+1)*sum(sum(binomial(i+k,i)*2^i*binomial(2*k+2,n-i-k)*(-1)^(n-i-k),i,0,n-k)/(k+1),k,0,n);
    
  • PARI
    x='x+O('x^99); Vec(-(4*x^3-7*x^2+4*x-1)/(2*x^4-5*x^3+8*x^2-5*x+1)) \\ Altug Alkan, Apr 01 2016

Formula

a(n) = (n+1)*Sum_{k=0..n} (Sum_{i=0..n-k} (binomial(i+k,i)*2^i*binomial(2*k+2,n-i-k)*(-1)^(n-i-k))/(k+1)).
a(n) = 5*a(n-1)-8*a(n-2)+5*a(n-3)-2*a(n-4) for n>3, a(0)=1, a(1)=1, a(2)=4, a(3)=13.