cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271206 Number T(n,k) of set partitions of [n] having exactly k triples (t,t+1,t+2) such that t+i is in block b+i for some b; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.

Original entry on oeis.org

1, 1, 2, 4, 1, 10, 4, 1, 28, 18, 5, 1, 89, 77, 30, 6, 1, 315, 345, 164, 45, 7, 1, 1233, 1617, 919, 299, 63, 8, 1, 5285, 8003, 5262, 2011, 492, 84, 9, 1, 24583, 41871, 31180, 13611, 3857, 754, 108, 10, 1, 123062, 231474, 191889, 94020, 30128, 6755, 1095, 135, 11, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 01 2016

Keywords

Examples

			T(3,1) = 1: 1|2|3.
T(4,1) = 4: 12|3|4, 14|2|3, 1|24|3, 1|2|34.
T(5,1) = 18: 123|4|5, 125|3|4, 12|35|4, 12|3|45, 13|24|5, 1|23|4|5, 145|2|3, 14|25|3, 14|2|35, 14|2|3|5, 15|24|3, 1|245|3, 1|24|35, 1|24|3|5, 15|2|34, 1|25|34, 1|2|345, 1|2|34|5.
T(5,2) = 5: 12|3|4|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45.
T(5,3) = 1: 1|2|3|4|5.
Triangle T(n,k) begins:
:  0 :     1;
:  1 :     1;
:  2 :     2;
:  3 :     4,     1;
:  4 :    10,     4,     1;
:  5 :    28,    18,     5,     1;
:  6 :    89,    77,    30,     6,    1;
:  7 :   315,   345,   164,    45,    7,   1;
:  8 :  1233,  1617,   919,   299,   63,   8,   1;
:  9 :  5285,  8003,  5262,  2011,  492,  84,   9,  1;
: 10 : 24583, 41871, 31180, 13611, 3857, 754, 108, 10, 1;
		

Crossrefs

Column k=0 gives A271207.
Row sums give A000110.
Cf. A185982.

Programs

  • Maple
    b:= proc(n, i, t, m) option remember; expand(`if`(n=0, 1, add((v->
         `if`(t and v, x, 1)*b(n-1, j, v, max(m, j)))(j=i+1), j=1..m+1)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 1, false, 0)):
    seq(T(n), n=0..14);
  • Mathematica
    b[n_, i_, t_, m_] := b[n, i, t, m] = Expand[If[n==0, 1, Sum[Function[v, If[t && v, x, 1]*b[n-1, j, v, Max[m, j]]][j==i+1], {j, 1, m+1}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 1, False, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Feb 05 2017, translated from Maple *)