A271218 Number of symmetric linked diagrams with n links and no simple link.
1, 0, 1, 3, 12, 39, 167, 660, 3083, 13961, 70728, 355457, 1936449, 10587960, 61539129, 361182139, 2224641540, 13880534119, 90090083047, 593246514588, 4038095508691, 27905008440273, 198401618299920, 1432253086621377, 10600146578310209, 79639887325700592, 611739960145556273
Offset: 0
Examples
For n=0 the a(0)=1 solution is { ∅ }. For n=1 there are no solutions since the link in a diagram with one link, 11, is simple. For n=2 the a(2)=1 solution is { 1212 }. For n=3 the a(3)=3 solutions are { 123123, 121323, 123231 }. For n=4 the a(4)=12 solutions are { 12123434, 12132434, 12324341, 12314234, 12341234, 12342341, 12314324, 12341324, 12343412, 12343421, 12324143, 12342143 }.
References
- J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.
Programs
-
Mathematica
RecurrenceTable[{a[n]==2a[n-1]+(2n-3)a[n-2]-(2n-5)a[n-3]+2a[n-4]-a[n-5],a[0]==1,a[1]==0,a[2]==1,a[3]==3,a[4]==12},a[n],{n,20}]
-
PARI
lista(nn) = {my(va = vector(nn)); va[1] = 1; va[2] = 0; va[3] = 1; va[4] = 3; va[5] = 12; for (n=5, nn-1, va[n+1] = 2*va[n] + (2*n-3)*va[n-1] - (2*n-5)*va[n-2] + 2*va[n-3] - va[n-4];); va;} \\ Michel Marcus, Jul 28 2020
Formula
a(n) = 2*a(n-1) + (2n-3)*a(n-2) - (2n-5)*a(n-3) + 2*a(n-4) - a(n-5).
a(n) = a(n-1) + 2*(n-1)*a(n-2) + a(n-3) + a(n-4) + 2*sum( k=0..n-4, a(k) ).
a(n) ~ 2^(-1/2) * e^(-5/8) * (2n/e)^(n/2) * e^( sqrt(n/2) ) (conjectured).
a(n)/a(n-1) ~ sqrt(2n) (conjectured).
a(n)/A047974(n) ~ 1/sqrt(e) (conjectured).
Extensions
More terms from Michel Marcus, Jul 28 2020
Comments