cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271231 Expansion of the modular cusp form ( eta(q^4) * eta(q^12) )^4 / ( eta(q^2) * eta(q^6) * eta(q^8) * eta(q^24) ), where eta is Dedekind's eta function.

Original entry on oeis.org

0, 1, 0, 1, 0, -2, 0, 0, 0, 1, 0, -4, 0, -2, 0, -2, 0, 2, 0, 4, 0, 0, 0, 8, 0, -1, 0, 1, 0, 6, 0, -8, 0, -4, 0, 0, 0, 6, 0, -2, 0, -6, 0, -4, 0, -2, 0, 0, 0, -7, 0, 2, 0, -2, 0, 8, 0, 4, 0, -4, 0, -2, 0, 0, 0, 4, 0, 4, 0, 8, 0, -8, 0, 10, 0, -1, 0, 0, 0, 8, 0, 1, 0, 4, 0, -4, 0, 6, 0, -6, 0, 0, 0, -8, 0, -8, 0, 2, 0, -4, 0, -18, 0, -16
Offset: 0

Views

Author

Wolfdieter Lang, Apr 19 2016

Keywords

Comments

The modularity pattern of the elliptic curve y^2 = x^3 + x^2 + x considered modulo prime(m) is seen from a(prime(m)) = prime(m) - N(prime(m)) = A271230(m), where N(prime(m))= A271229(m) is the number of solutions of this congruence. That is, the p-defect coincides with the prime indexed expansion coefficient (here for all primes).
This modular cusp form of weight 2 and level N = 48 = 2^4*3 is Nr. 54 in Martin's Table 1 (corrected by giving the 24 the missing exponent -1). See also the Michael Somos link where this correction has been observed.
This modular cusp form is a simultaneous eigenform of every Hecke operators T_p, with p a prime not 2 or 3 (bad primes) with eigenvalue lambda(p) = a(p). (See the Martin reference, Proposition 33, p. 4851.)
In the Martin and Ono reference, p. 3173 (Theorem 2), this cusp form appears (in the corrected version) in the row Conductor 48, and it is there related to the elliptic curve y^2 = x^3 + x^2 - 4*x - 4. The p-defects of this curve coincide with the ones of the curve y^2 = x^3 + x^2 + x modulo primes p given in A271230. - Wolfdieter Lang, Apr 21 2016
Multiplicative. See A159819 for formula. - Andrew Howroyd, Aug 06 2018

Examples

			n=2: a(2) = A271230(1) = 0.
n=5: a(5) = A271230(3) = -2.
See the example section of A271229 for the solutions for the first primes.
		

Crossrefs

Programs

  • Mathematica
    QP = QPochhammer;
    a[n_] := If[OddQ[n], SeriesCoefficient[QP[-x] QP[x^2] QP[-x^3] QP[x^6], {x, 0, (n-1)/2}], 0];
    a /@ Range[0, 100] (* Jean-François Alcover, Sep 19 2019 *)
  • PARI
    q='q+O('q^220); concat([0], Vec( (eta(q^4)*eta(q^12))^4 / (eta(q^2)*eta(q^6)*eta(q^8)*eta(q^24) ) ) ) \\ Joerg Arndt, Sep 12 2016

Formula

a(2*n+1) = A159819(n), a(2*n) = 0.
O.g.f.: Expansion in q = exp(2*Pi*i*z) with Im(z) > 0 of (eta(4*z)*eta(12*z))^4 / (eta(2*z)*eta(6*z)*eta(8*z)*eta(24*z)), where eta(z) = q^(1/24)*Product_{n >= 1} (1 - q^n) is the Dedekind function with q = q(z) given above, and i is the imaginary unit.
a(prime(m)) = A271230(m), m >= 1.