A271231 Expansion of the modular cusp form ( eta(q^4) * eta(q^12) )^4 / ( eta(q^2) * eta(q^6) * eta(q^8) * eta(q^24) ), where eta is Dedekind's eta function.
0, 1, 0, 1, 0, -2, 0, 0, 0, 1, 0, -4, 0, -2, 0, -2, 0, 2, 0, 4, 0, 0, 0, 8, 0, -1, 0, 1, 0, 6, 0, -8, 0, -4, 0, 0, 0, 6, 0, -2, 0, -6, 0, -4, 0, -2, 0, 0, 0, -7, 0, 2, 0, -2, 0, 8, 0, 4, 0, -4, 0, -2, 0, 0, 0, 4, 0, 4, 0, 8, 0, -8, 0, 10, 0, -1, 0, 0, 0, 8, 0, 1, 0, 4, 0, -4, 0, 6, 0, -6, 0, 0, 0, -8, 0, -8, 0, 2, 0, -4, 0, -18, 0, -16
Offset: 0
Examples
n=2: a(2) = A271230(1) = 0. n=5: a(5) = A271230(3) = -2. See the example section of A271229 for the solutions for the first primes.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
- Yves Martin and Ken Ono, Eta-Quotients and Elliptic Curves, Proc. Amer. Math. Soc. 125, No 11 (1997), 3169-3176.
- Michael Somos, Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers
Programs
-
Mathematica
QP = QPochhammer; a[n_] := If[OddQ[n], SeriesCoefficient[QP[-x] QP[x^2] QP[-x^3] QP[x^6], {x, 0, (n-1)/2}], 0]; a /@ Range[0, 100] (* Jean-François Alcover, Sep 19 2019 *)
-
PARI
q='q+O('q^220); concat([0], Vec( (eta(q^4)*eta(q^12))^4 / (eta(q^2)*eta(q^6)*eta(q^8)*eta(q^24) ) ) ) \\ Joerg Arndt, Sep 12 2016
Formula
a(2*n+1) = A159819(n), a(2*n) = 0.
O.g.f.: Expansion in q = exp(2*Pi*i*z) with Im(z) > 0 of (eta(4*z)*eta(12*z))^4 / (eta(2*z)*eta(6*z)*eta(8*z)*eta(24*z)), where eta(z) = q^(1/24)*Product_{n >= 1} (1 - q^n) is the Dedekind function with q = q(z) given above, and i is the imaginary unit.
a(prime(m)) = A271230(m), m >= 1.
Comments