A271236 G.f.: Product_{k>=1} 1/(1 - (9*x)^k)^(1/3).
1, 3, 45, 450, 5805, 52326, 705591, 6190425, 77219325, 751178610, 8522919063, 80502824835, 975122402985, 8949951461925, 100088881882830, 1003346683458480, 10828622925516312, 104307212166072165, 1152197107898173875, 11048535008792967825, 119509353627934830327
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
nmax = 30; CoefficientList[Series[Product[1/(1 - (9*x)^k)^(1/3), {k, 1, nmax}], {x, 0, nmax}], x]
-
PARI
N=99; x='x+O('x^N); Vec(prod(k=1, N, 1/(1-(9*x)^k)^(1/3))) \\ Altug Alkan, Apr 20 2018
Formula
a(n) ~ 3^(2*n - 2/3) * exp(sqrt(2*n)*Pi/3) / (2^(3/2) * n^(5/6)).
Comments