A303074
Expansion of Product_{n>=1} (1 + (9*x)^n)^(1/3).
Original entry on oeis.org
1, 3, 18, 369, 1674, 31428, 266733, 3012714, 19924299, 319970007, 2688208641, 27248985549, 248061612240, 2597556114648, 25367004717831, 289880288735373, 2289952155529719, 23895509092285545, 252143223166599723, 2308267172943599733, 22389894059315522040
Offset: 0
-
CoefficientList[Series[(QPochhammer[-1, 9*x]/2)^(1/3), {x, 0, 20}], x]
A271235
G.f. equals the square root of P(4*x), where P(x) is the g.f. of the partition numbers (A000041).
Original entry on oeis.org
1, 2, 14, 68, 406, 1820, 10892, 48008, 266214, 1248044, 6454116, 29642424, 156638076, 707729176, 3551518936, 16671232784, 81685862790, 375557689292, 1843995831412, 8437648295384, 40779718859796, 188104838512840, 891508943457064, 4091507664092016, 19457793452994012, 88760334081132280, 415942096027738728, 1905990594266105648, 8875964207106121784, 40416438507461834160
Offset: 0
G.f.: A(x) = 1 + 2*x + 14*x^2 + 68*x^3 + 406*x^4 + 1820*x^5 + 10892*x^6 + 48008*x^7 + 266214*x^8 + 1248044*x^9 + 6454116*x^10 +...
where A(x)^2 = P(4*x).
RELATED SERIES.
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + 101*x^13 + 135*x^14 +...+ A000041(n)*x^n +...
1/A(x)^6 = 1 - 12*x + 320*x^3 - 28672*x^6 + 9437184*x^10 - 11811160064*x^15 + 57174604644352*x^21 +...+ (-1)^n*(2*n+1)*(4*x)^(n*(n+1)/2) +...
-
nmax = 30; CoefficientList[Series[Product[1/Sqrt[1 - (4*x)^k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 02 2016 *)
-
{a(n) = polcoeff( prod(k=1,n, 1/sqrt(1 - (4*x)^k +x*O(x^n))),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n) = if( n<0, 0, polcoeff( sum( k=1, sqrtint(n+1), (4*x)^(k^2) / prod(j=1, k, 1 - (4*x)^j, 1 + x*O(x^n))^2, 1)^(1/2), n))};
for(n=0,30,print1(a(n),", "))
-
N=99; x='x+O('x^N); Vec(prod(k=1, N, 1/(1-(4*x)^k)^(1/2))) \\ Altug Alkan, Apr 20 2018
A303135
Expansion of Product_{n>=1} (1 - (16*x)^n)^(-1/4).
Original entry on oeis.org
1, 4, 104, 1760, 39520, 590720, 14285056, 205151232, 4596467200, 75375073280, 1504196046848, 23673049726976, 525315968712704, 7912159583600640, 158055039529779200, 2726833423421800448, 51889395654107463680, 840470097284214292480, 16765991910040314839040
Offset: 0
-
CoefficientList[Series[1/QPochhammer[16*x]^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2018 *)
A303136
Expansion of Product_{n>=1} (1 - (25*x)^n)^(-1/5).
Original entry on oeis.org
1, 5, 200, 5125, 177500, 3952500, 150715625, 3185187500, 112844843750, 2783033593750, 86330708203125, 2019237027343750, 72195817812500000, 1591910699609375000, 50158322275878906250, 1322261581989501953125, 39183430287559814453125, 946961406814801025390625
Offset: 0
-
CoefficientList[Series[1/QPochhammer[25*x]^(1/5), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2018 *)
CoefficientList[Series[Product[(1-(25x)^n)^(-1/5),{n,20}],{x,0,20}],x] (* Harvey P. Dale, Nov 04 2021 *)
A303152
Expansion of Product_{n>=1} (1 - (9*x)^n)^(1/3).
Original entry on oeis.org
1, -3, -36, -207, -2214, -2754, -138591, 547722, -3730293, 30138075, 133709535, 7735237479, -35284817430, 702841889322, 3056530613769, 9493893988155, 112554319443867, 3822223052352735, -3940051663965051, 250298859930263181, -551418001934739786, 1061747224529191191
Offset: 0
A303342
Expansion of Product_{k>=1} ((1 + (9*x)^k) / (1 - (9*x)^k))^(1/3).
Original entry on oeis.org
1, 6, 72, 1008, 10746, 130896, 1569456, 17371584, 192625128, 2260005462, 24725148912, 270748885392, 3027318848208, 32608207056528, 354309508944288, 3902606972751168, 41393526342215994, 443390745816982944, 4783687280410092984, 50532141192366275280
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[((1+(9*x)^k)/(1-(9*x)^k))^(1/3), {k, 1, nmax}], {x, 0, nmax}], x]
A370735
a(n) = 5^(2*n) * [x^n] Product_{k>=1} 1/(1 - 3*x^k)^(1/5).
Original entry on oeis.org
1, 15, 1050, 52125, 3277500, 179801250, 11966690625, 738318187500, 49788716718750, 3314446448437500, 227432073022265625, 15631633385109375000, 1090877899335878906250, 76338563689129101562500, 5384934139819611328125000, 381204340327212964599609375, 27111589537137988341064453125
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[1/(1-3*x^k), {k, 1, nmax}]^(1/5), {x, 0, nmax}], x] * 25^Range[0, nmax]
nmax = 20; CoefficientList[Series[Product[1/(1-3*(25*x)^k), {k, 1, nmax}]^(1/5), {x, 0, nmax}], x]
Showing 1-7 of 7 results.
Comments