cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A298994 Expansion of Product_{n>=1} (1 + (4*x)^n)^(1/2).

Original entry on oeis.org

1, 2, 6, 52, 134, 956, 4124, 20008, 73158, 439660, 1874612, 8350808, 37583004, 169862616, 779948152, 3774085968, 15435601222, 69542934604, 329825707332, 1403190752632, 6313190864052, 29079505547912, 126937389732872, 552273916408368, 2477249228318748
Offset: 0

Views

Author

Seiichi Manyama, Jan 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[QPochhammer[-1, 4*x]/2], {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 18 2018 *)

Formula

Convolution inverse of A298993.
a(n) ~ 2^(2*n - 2) * exp(Pi*sqrt(n/6)) / (3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 18 2018
Sum_{k=0..n} a(k)*a(n-k) = 4^n * A000009(n). - Vaclav Kotesovec, Jun 07 2025

A271236 G.f.: Product_{k>=1} 1/(1 - (9*x)^k)^(1/3).

Original entry on oeis.org

1, 3, 45, 450, 5805, 52326, 705591, 6190425, 77219325, 751178610, 8522919063, 80502824835, 975122402985, 8949951461925, 100088881882830, 1003346683458480, 10828622925516312, 104307212166072165, 1152197107898173875, 11048535008792967825, 119509353627934830327
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 02 2016

Keywords

Comments

In general, for h>=1, if g.f. = Product_{k>=1} 1/(1-(h^2*x)^k)^(1/h), then a(n) ~ h^(2*n) * exp(Pi*sqrt(2*n/(3*h))) / (2^(5*h+3) * 3^(h+1) * h^(h+1) * n^(3*h+1))^(1/(4*h)).
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1/3, g(n) = 9^n. - Seiichi Manyama, Apr 20 2018

Crossrefs

Expansion of Product_{n>=1} (1 - ((b^2)*x)^n)^(-1/b): A000041 (b=1), A271235 (b=2), this sequence (b=3), A303135 (b=4), A303136 (b=5).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1 - (9*x)^k)^(1/3), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, 1/(1-(9*x)^k)^(1/3))) \\ Altug Alkan, Apr 20 2018

Formula

a(n) ~ 3^(2*n - 2/3) * exp(sqrt(2*n)*Pi/3) / (2^(3/2) * n^(5/6)).

A303152 Expansion of Product_{n>=1} (1 - (9*x)^n)^(1/3).

Original entry on oeis.org

1, -3, -36, -207, -2214, -2754, -138591, 547722, -3730293, 30138075, 133709535, 7735237479, -35284817430, 702841889322, 3056530613769, 9493893988155, 112554319443867, 3822223052352735, -3940051663965051, 250298859930263181, -551418001934739786, 1061747224529191191
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2018

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/3, g(n) = 9^n.

Crossrefs

Expansion of Product_{n>=1} (1 - ((b^2)*x)^n)^(1/b): A010815 (b=1), A298411 (b=2), this sequence (b=3), A303153 (b=4), A303154 (b=5).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-(9*x)^k)^(1/3)))

A303124 Expansion of Product_{n>=1} (1 + (16*x)^n)^(1/4).

Original entry on oeis.org

1, 4, 40, 1504, 10336, 387968, 5349632, 111442944, 1100563968, 36711258112, 493805416448, 9186633203712, 134635599806464, 2648342619422720, 43443234834350080, 938422838970810368, 11378951438668791808, 224791017150689574912, 4129154423023897411584
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2018

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/4, g(n) = -16^n.

Crossrefs

Expansion of Product_{n>=1} (1 + ((b^2)*x)^n)^(1/b): A000009 (b=1), A298994 (b=2), A303074 (b=3), this sequence (b=4), A303125 (b=5).

Programs

  • Mathematica
    CoefficientList[Series[(QPochhammer[-1, 16*x]/2)^(1/4), {x, 0, 20}],
    x] (* Vaclav Kotesovec, Apr 19 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+(16*x)^k)^(1/4)))

Formula

a(n) ~ 2^(4*n - 17/8) * exp(sqrt(n/3)*Pi/2) / (3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 19 2018

A303125 Expansion of Product_{n>=1} (1 + (25*x)^n)^(1/5).

Original entry on oeis.org

1, 5, 75, 4500, 43125, 2765000, 55871875, 1876671875, 25128437500, 1495793359375, 28953471875000, 871257974609375, 18280647500000000, 596362168603515625, 14502797130615234375, 519397373566650390625, 8604439235863037109375
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2018

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/5, g(n) = -25^n.

Crossrefs

Expansion of Product_{n>=1} (1 + ((b^2)*x)^n)^(1/b): A000009 (b=1), A298994 (b=2), A303074 (b=3), A303124 (b=4), this sequence (b=5).

Programs

  • Mathematica
    CoefficientList[Series[(QPochhammer[-1, 25*x]/2)^(1/5), {x, 0, 20}],
    x] (* Vaclav Kotesovec, Apr 19 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+(25*x)^k)^(1/5)))

Formula

a(n) ~ 5^(2*n - 1/4) * exp(Pi*sqrt(n/15)) / (2^(8/5) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 19 2018

A303130 Expansion of Product_{n>=1} (1 + (9*x)^n)^(-1/3).

Original entry on oeis.org

1, -3, -9, -288, 459, -19278, -1539, -1265301, 10734525, -147277926, 520204923, -7511358663, 88687160577, -668191863951, 5357547144702, -87542760890124, 967961569696722, -5115624735401361, 46065749188891275, -430898393089547667, 6203508335817169257
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2018

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1/3, g(n) = -9^n.

Crossrefs

Expansion of Product_{n>=1} (1 + ((b^2)*x)^n)^(-1/b): A081362 (b=1), A298993 (b=2), this sequence (b=3), A303131 (b=4), A303132 (b=5).
Cf. A303074.

Programs

  • Mathematica
    CoefficientList[Series[(2/QPochhammer[-1, 9*x])^(1/3), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 20 2018 *)
  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, (1 + (9*x)^k)^(-1/3))) \\ Altug Alkan, Apr 20 2018

Formula

a(n) ~ (-1)^n * exp(Pi*sqrt(n/18)) * 3^(2*n - 1/2) / (2^(7/4) * n^(3/4)). - Vaclav Kotesovec, Apr 20 2018

A303342 Expansion of Product_{k>=1} ((1 + (9*x)^k) / (1 - (9*x)^k))^(1/3).

Original entry on oeis.org

1, 6, 72, 1008, 10746, 130896, 1569456, 17371584, 192625128, 2260005462, 24725148912, 270748885392, 3027318848208, 32608207056528, 354309508944288, 3902606972751168, 41393526342215994, 443390745816982944, 4783687280410092984, 50532141192366275280
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 22 2018

Keywords

Comments

In general, for h>=1, if g.f. = Product_{k>=1} ((1 + (h^2*x)^k) / (1 - (h^2*x)^k))^(1/h), then a(n) ~ h^(2*n) * exp(Pi*sqrt(n/h)) / (2^(3/2 + 3/(2*h)) * h^(1/4 + 1/(4*h)) * n^(3/4 + 1/(4*h))).

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[((1+(9*x)^k)/(1-(9*x)^k))^(1/3), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 3^(2*n) * exp(Pi*sqrt(n/3)) / (4 * 3^(1/3) * n^(5/6)).

A370739 a(n) = 5^(2*n) * [x^n] Product_{k>=1} (1 + 3*x^k)^(1/5).

Original entry on oeis.org

1, 15, -75, 35250, -1138125, 72645000, -3307996875, 244578890625, -15502648125000, 985908809765625, -63515254624218750, 4314500023927734375, -291905297026816406250, 19789483493484814453125, -1355414138248614990234375, 93666904586649390380859375, -6498800175020013123779296875
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2024

Keywords

Comments

In general, if d > 1, m > 1 and g.f. = Product_{k>=1} (1 + d*x^k)^(1/m), then a(n) ~ (-1)^(n+1) * QPochhammer(-1/d)^(1/m) * d^n / (m*Gamma(1 - 1/m) * n^(1 + 1/m)).

Crossrefs

Cf. A032308 (d=3,m=1), A370711 (d=3,m=2), A370712 (d=3,m=3), A370738 (d=3,m=4).
Cf. A032302 (d=2,m=1), A370709 (d=2,m=2), A370716 (d=2,m=3), A370736 (d=2,m=4), A370737 (d=2,m=5).
Cf. A000009 (d=1,m=1), A298994 (d=1,m=2), A303074 (d=1,m=3)

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1+3*x^k, {k, 1, nmax}]^(1/5), {x, 0, nmax}], x] * 25^Range[0, nmax]
    nmax = 20; CoefficientList[Series[Product[1+3*(25*x)^k, {k, 1, nmax}]^(1/5), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + 3*(25*x)^k)^(1/5).
a(n) ~ (-1)^(n+1) * QPochhammer(-1/3)^(1/5) * 75^n / (5 * Gamma(4/5) * n^(6/5)).
Showing 1-8 of 8 results.