A303153
Expansion of Product_{n>=1} (1 - (16*x)^n)^(1/4).
Original entry on oeis.org
1, -4, -88, -992, -19360, -97152, -4296448, 4539392, -568015360, -127621120, -39357927424, 2424998313984, -38804685471744, 799759166930944, 4879962868940800, 41563181340426240, 585185165832486912, 55834295603426754560, -75535223925056208896
Offset: 0
A303131
Expansion of Product_{n>=1} (1 + (16*x)^n)^(-1/4).
Original entry on oeis.org
1, -4, -24, -1248, 1632, -267136, -669440, -56925184, 597165568, -19934894080, 61831327744, -3209599664128, 47593545383936, -840449808072704, 8113679782510592, -350055154021040128, 5703847053344768000, -57129722970675609600, 704939718429511778304
Offset: 0
-
CoefficientList[Series[(2/QPochhammer[-1, 16*x])^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 20 2018 *)
A303125
Expansion of Product_{n>=1} (1 + (25*x)^n)^(1/5).
Original entry on oeis.org
1, 5, 75, 4500, 43125, 2765000, 55871875, 1876671875, 25128437500, 1495793359375, 28953471875000, 871257974609375, 18280647500000000, 596362168603515625, 14502797130615234375, 519397373566650390625, 8604439235863037109375
Offset: 0
-
CoefficientList[Series[(QPochhammer[-1, 25*x]/2)^(1/5), {x, 0, 20}],
x] (* Vaclav Kotesovec, Apr 19 2018 *)
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+(25*x)^k)^(1/5)))
Showing 1-3 of 3 results.
Comments