cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A298411 Coefficients of q^(-1/24)*eta(4q)^(1/2).

Original entry on oeis.org

1, -2, -10, -20, -90, 132, -836, 6040, 2310, 60180, 180308, 1662568, -2995620, 24401320, 44072120, -102437328, 19390406, 2649221300, -10584460060, 14475802440, -228570333836, -815899620616, 2088529753800, -5590702681520, -100828534100580, -172013432412024
Offset: 0

Views

Author

William J. Keith, Jan 18 2018

Keywords

Comments

The q^(kn) term of any single factor of the product (1-(4q)^k)^(1/2) is (-2)*A000108(n-1). Hence these numbers are related to the Catalan numbers A000108 by a partition-based convolution.
Sequence appears to be positive and negative roughly half the time.
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/2, g(n) = 4^n. - Seiichi Manyama, Apr 20 2018

Crossrefs

Expansion of Product_{n>=1} (1 - ((b^2)*x)^n)^(1/b): A010815 (b=1), this sequence (b=2), A303152 (b=3), A303153 (b=4), A303154 (b=5).

Programs

  • Mathematica
    Series[Product[(1 - (4 q)^k)^(1/2), {k, 1, 100}], {q, 0, 100}]
  • PARI
    q='q+O('q^99); Vec(eta(4*q)^(1/2)) \\ Altug Alkan, Apr 20 2018

Formula

G.f.: Product_{k>=1} (1 - (4x)^k)^(1/2).

A303135 Expansion of Product_{n>=1} (1 - (16*x)^n)^(-1/4).

Original entry on oeis.org

1, 4, 104, 1760, 39520, 590720, 14285056, 205151232, 4596467200, 75375073280, 1504196046848, 23673049726976, 525315968712704, 7912159583600640, 158055039529779200, 2726833423421800448, 51889395654107463680, 840470097284214292480, 16765991910040314839040
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2018

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1/4, g(n) = 16^n.

Crossrefs

Expansion of Product_{n>=1} (1 - ((b^2)*x)^n)^(-1/b): A000041 (b=1), A271235 (b=2), A271236 (b=3), this sequence (b=4), A303136 (b=5).

Programs

  • Mathematica
    CoefficientList[Series[1/QPochhammer[16*x]^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2018 *)

Formula

a(n) ~ exp(sqrt(n/6)*Pi) * 2^(4*n - 33/16) / (3^(5/16) * n^(13/16)). - Vaclav Kotesovec, Apr 19 2018

A303154 Expansion of Product_{n>=1} (1 - (25*x)^n)^(1/5).

Original entry on oeis.org

1, -5, -175, -3250, -100625, -1015000, -58034375, -154171875, -22257500000, -154144921875, -6824828906250, 175448177734375, -8774446542968750, 164769756689453125, 756859169189453125, 9661555852294921875, -16148589271240234375, 81663068586871337890625
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2018

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/5, g(n) = 25^n.

Crossrefs

Expansion of Product_{n>=1} (1 - ((b^2)*x)^n)^(1/b): A010815 (b=1), A298411 (b=2), A303152 (b=3), A303153 (b=4), this sequence (b=5).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-(25*x)^k)^(1/5)))

A303152 Expansion of Product_{n>=1} (1 - (9*x)^n)^(1/3).

Original entry on oeis.org

1, -3, -36, -207, -2214, -2754, -138591, 547722, -3730293, 30138075, 133709535, 7735237479, -35284817430, 702841889322, 3056530613769, 9493893988155, 112554319443867, 3822223052352735, -3940051663965051, 250298859930263181, -551418001934739786, 1061747224529191191
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2018

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/3, g(n) = 9^n.

Crossrefs

Expansion of Product_{n>=1} (1 - ((b^2)*x)^n)^(1/b): A010815 (b=1), A298411 (b=2), this sequence (b=3), A303153 (b=4), A303154 (b=5).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-(9*x)^k)^(1/3)))

A303124 Expansion of Product_{n>=1} (1 + (16*x)^n)^(1/4).

Original entry on oeis.org

1, 4, 40, 1504, 10336, 387968, 5349632, 111442944, 1100563968, 36711258112, 493805416448, 9186633203712, 134635599806464, 2648342619422720, 43443234834350080, 938422838970810368, 11378951438668791808, 224791017150689574912, 4129154423023897411584
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2018

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/4, g(n) = -16^n.

Crossrefs

Expansion of Product_{n>=1} (1 + ((b^2)*x)^n)^(1/b): A000009 (b=1), A298994 (b=2), A303074 (b=3), this sequence (b=4), A303125 (b=5).

Programs

  • Mathematica
    CoefficientList[Series[(QPochhammer[-1, 16*x]/2)^(1/4), {x, 0, 20}],
    x] (* Vaclav Kotesovec, Apr 19 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+(16*x)^k)^(1/4)))

Formula

a(n) ~ 2^(4*n - 17/8) * exp(sqrt(n/3)*Pi/2) / (3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 19 2018
Showing 1-5 of 5 results.