A298411
Coefficients of q^(-1/24)*eta(4q)^(1/2).
Original entry on oeis.org
1, -2, -10, -20, -90, 132, -836, 6040, 2310, 60180, 180308, 1662568, -2995620, 24401320, 44072120, -102437328, 19390406, 2649221300, -10584460060, 14475802440, -228570333836, -815899620616, 2088529753800, -5590702681520, -100828534100580, -172013432412024
Offset: 0
-
Series[Product[(1 - (4 q)^k)^(1/2), {k, 1, 100}], {q, 0, 100}]
-
q='q+O('q^99); Vec(eta(4*q)^(1/2)) \\ Altug Alkan, Apr 20 2018
A303135
Expansion of Product_{n>=1} (1 - (16*x)^n)^(-1/4).
Original entry on oeis.org
1, 4, 104, 1760, 39520, 590720, 14285056, 205151232, 4596467200, 75375073280, 1504196046848, 23673049726976, 525315968712704, 7912159583600640, 158055039529779200, 2726833423421800448, 51889395654107463680, 840470097284214292480, 16765991910040314839040
Offset: 0
-
CoefficientList[Series[1/QPochhammer[16*x]^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2018 *)
A303154
Expansion of Product_{n>=1} (1 - (25*x)^n)^(1/5).
Original entry on oeis.org
1, -5, -175, -3250, -100625, -1015000, -58034375, -154171875, -22257500000, -154144921875, -6824828906250, 175448177734375, -8774446542968750, 164769756689453125, 756859169189453125, 9661555852294921875, -16148589271240234375, 81663068586871337890625
Offset: 0
A303152
Expansion of Product_{n>=1} (1 - (9*x)^n)^(1/3).
Original entry on oeis.org
1, -3, -36, -207, -2214, -2754, -138591, 547722, -3730293, 30138075, 133709535, 7735237479, -35284817430, 702841889322, 3056530613769, 9493893988155, 112554319443867, 3822223052352735, -3940051663965051, 250298859930263181, -551418001934739786, 1061747224529191191
Offset: 0
A303124
Expansion of Product_{n>=1} (1 + (16*x)^n)^(1/4).
Original entry on oeis.org
1, 4, 40, 1504, 10336, 387968, 5349632, 111442944, 1100563968, 36711258112, 493805416448, 9186633203712, 134635599806464, 2648342619422720, 43443234834350080, 938422838970810368, 11378951438668791808, 224791017150689574912, 4129154423023897411584
Offset: 0
-
CoefficientList[Series[(QPochhammer[-1, 16*x]/2)^(1/4), {x, 0, 20}],
x] (* Vaclav Kotesovec, Apr 19 2018 *)
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+(16*x)^k)^(1/4)))
Showing 1-5 of 5 results.
Comments