A271236
G.f.: Product_{k>=1} 1/(1 - (9*x)^k)^(1/3).
Original entry on oeis.org
1, 3, 45, 450, 5805, 52326, 705591, 6190425, 77219325, 751178610, 8522919063, 80502824835, 975122402985, 8949951461925, 100088881882830, 1003346683458480, 10828622925516312, 104307212166072165, 1152197107898173875, 11048535008792967825, 119509353627934830327
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[1/(1 - (9*x)^k)^(1/3), {k, 1, nmax}], {x, 0, nmax}], x]
-
N=99; x='x+O('x^N); Vec(prod(k=1, N, 1/(1-(9*x)^k)^(1/3))) \\ Altug Alkan, Apr 20 2018
A298411
Coefficients of q^(-1/24)*eta(4q)^(1/2).
Original entry on oeis.org
1, -2, -10, -20, -90, 132, -836, 6040, 2310, 60180, 180308, 1662568, -2995620, 24401320, 44072120, -102437328, 19390406, 2649221300, -10584460060, 14475802440, -228570333836, -815899620616, 2088529753800, -5590702681520, -100828534100580, -172013432412024
Offset: 0
-
Series[Product[(1 - (4 q)^k)^(1/2), {k, 1, 100}], {q, 0, 100}]
-
q='q+O('q^99); Vec(eta(4*q)^(1/2)) \\ Altug Alkan, Apr 20 2018
A303153
Expansion of Product_{n>=1} (1 - (16*x)^n)^(1/4).
Original entry on oeis.org
1, -4, -88, -992, -19360, -97152, -4296448, 4539392, -568015360, -127621120, -39357927424, 2424998313984, -38804685471744, 799759166930944, 4879962868940800, 41563181340426240, 585185165832486912, 55834295603426754560, -75535223925056208896
Offset: 0
A303154
Expansion of Product_{n>=1} (1 - (25*x)^n)^(1/5).
Original entry on oeis.org
1, -5, -175, -3250, -100625, -1015000, -58034375, -154171875, -22257500000, -154144921875, -6824828906250, 175448177734375, -8774446542968750, 164769756689453125, 756859169189453125, 9661555852294921875, -16148589271240234375, 81663068586871337890625
Offset: 0
Showing 1-4 of 4 results.
Comments