A303154
Expansion of Product_{n>=1} (1 - (25*x)^n)^(1/5).
Original entry on oeis.org
1, -5, -175, -3250, -100625, -1015000, -58034375, -154171875, -22257500000, -154144921875, -6824828906250, 175448177734375, -8774446542968750, 164769756689453125, 756859169189453125, 9661555852294921875, -16148589271240234375, 81663068586871337890625
Offset: 0
A303132
Expansion of Product_{n>=1} (1 + (25*x)^n)^(-1/5).
Original entry on oeis.org
1, -5, -50, -3875, 2500, -2046250, -12409375, -1087687500, 13232343750, -907225000000, 1545669140625, -362705679687500, 6007095839843750, -224713698632812500, 2118331116210937500, -226812683210205078125, 4765872641563720703125
Offset: 0
-
CoefficientList[Series[(2/QPochhammer[-1, 25*x])^(1/5), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 20 2018 *)
A303124
Expansion of Product_{n>=1} (1 + (16*x)^n)^(1/4).
Original entry on oeis.org
1, 4, 40, 1504, 10336, 387968, 5349632, 111442944, 1100563968, 36711258112, 493805416448, 9186633203712, 134635599806464, 2648342619422720, 43443234834350080, 938422838970810368, 11378951438668791808, 224791017150689574912, 4129154423023897411584
Offset: 0
-
CoefficientList[Series[(QPochhammer[-1, 16*x]/2)^(1/4), {x, 0, 20}],
x] (* Vaclav Kotesovec, Apr 19 2018 *)
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+(16*x)^k)^(1/4)))
Showing 1-3 of 3 results.
Comments