A303074
Expansion of Product_{n>=1} (1 + (9*x)^n)^(1/3).
Original entry on oeis.org
1, 3, 18, 369, 1674, 31428, 266733, 3012714, 19924299, 319970007, 2688208641, 27248985549, 248061612240, 2597556114648, 25367004717831, 289880288735373, 2289952155529719, 23895509092285545, 252143223166599723, 2308267172943599733, 22389894059315522040
Offset: 0
-
CoefficientList[Series[(QPochhammer[-1, 9*x]/2)^(1/3), {x, 0, 20}], x]
A271235
G.f. equals the square root of P(4*x), where P(x) is the g.f. of the partition numbers (A000041).
Original entry on oeis.org
1, 2, 14, 68, 406, 1820, 10892, 48008, 266214, 1248044, 6454116, 29642424, 156638076, 707729176, 3551518936, 16671232784, 81685862790, 375557689292, 1843995831412, 8437648295384, 40779718859796, 188104838512840, 891508943457064, 4091507664092016, 19457793452994012, 88760334081132280, 415942096027738728, 1905990594266105648, 8875964207106121784, 40416438507461834160
Offset: 0
G.f.: A(x) = 1 + 2*x + 14*x^2 + 68*x^3 + 406*x^4 + 1820*x^5 + 10892*x^6 + 48008*x^7 + 266214*x^8 + 1248044*x^9 + 6454116*x^10 +...
where A(x)^2 = P(4*x).
RELATED SERIES.
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + 101*x^13 + 135*x^14 +...+ A000041(n)*x^n +...
1/A(x)^6 = 1 - 12*x + 320*x^3 - 28672*x^6 + 9437184*x^10 - 11811160064*x^15 + 57174604644352*x^21 +...+ (-1)^n*(2*n+1)*(4*x)^(n*(n+1)/2) +...
-
nmax = 30; CoefficientList[Series[Product[1/Sqrt[1 - (4*x)^k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 02 2016 *)
-
{a(n) = polcoeff( prod(k=1,n, 1/sqrt(1 - (4*x)^k +x*O(x^n))),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n) = if( n<0, 0, polcoeff( sum( k=1, sqrtint(n+1), (4*x)^(k^2) / prod(j=1, k, 1 - (4*x)^j, 1 + x*O(x^n))^2, 1)^(1/2), n))};
for(n=0,30,print1(a(n),", "))
-
N=99; x='x+O('x^N); Vec(prod(k=1, N, 1/(1-(4*x)^k)^(1/2))) \\ Altug Alkan, Apr 20 2018
A271236
G.f.: Product_{k>=1} 1/(1 - (9*x)^k)^(1/3).
Original entry on oeis.org
1, 3, 45, 450, 5805, 52326, 705591, 6190425, 77219325, 751178610, 8522919063, 80502824835, 975122402985, 8949951461925, 100088881882830, 1003346683458480, 10828622925516312, 104307212166072165, 1152197107898173875, 11048535008792967825, 119509353627934830327
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[1/(1 - (9*x)^k)^(1/3), {k, 1, nmax}], {x, 0, nmax}], x]
-
N=99; x='x+O('x^N); Vec(prod(k=1, N, 1/(1-(9*x)^k)^(1/3))) \\ Altug Alkan, Apr 20 2018
A298411
Coefficients of q^(-1/24)*eta(4q)^(1/2).
Original entry on oeis.org
1, -2, -10, -20, -90, 132, -836, 6040, 2310, 60180, 180308, 1662568, -2995620, 24401320, 44072120, -102437328, 19390406, 2649221300, -10584460060, 14475802440, -228570333836, -815899620616, 2088529753800, -5590702681520, -100828534100580, -172013432412024
Offset: 0
-
Series[Product[(1 - (4 q)^k)^(1/2), {k, 1, 100}], {q, 0, 100}]
-
q='q+O('q^99); Vec(eta(4*q)^(1/2)) \\ Altug Alkan, Apr 20 2018
A298993
Expansion of Product_{n>=1} 1/sqrt(1 + (4*x)^n).
Original entry on oeis.org
1, -2, -2, -36, 54, -476, 556, -6088, 35878, -156844, 444164, -1734648, 11948604, -35313048, 156354328, -864527760, 4733447686, -12692853452, 54065039380, -226098757912, 1278838329812, -5257771138376, 19455009120232, -76455773381360, 453306681446748
Offset: 0
-
CoefficientList[Series[Sqrt[2/QPochhammer[-1, 4*x]], {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 18 2018 *)
A370709
a(n) = 2^n * [x^n] Product_{k>=1} (1 + 2*x^k)^(1/2).
Original entry on oeis.org
1, 2, 2, 20, 6, 108, 148, 776, -186, 5964, -4, 51032, -89700, 512120, -1259416, 6406032, -19733434, 78363148, -268823572, 1047941688, -3800035916, 14327505832, -52766730600, 199492430192, -746479735524, 2811936761016, -10588174502568, 40092283176560, -151796846803592
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[(1 + 2*x^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x] * 2^Range[0, nmax]
nmax = 30; CoefficientList[Series[Product[(1 + 2*(2*x)^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x]
nmax = 30; CoefficientList[Series[Sqrt[QPochhammer[-2, x]/3], {x, 0, nmax}], x] * 2^Range[0, nmax]
A303124
Expansion of Product_{n>=1} (1 + (16*x)^n)^(1/4).
Original entry on oeis.org
1, 4, 40, 1504, 10336, 387968, 5349632, 111442944, 1100563968, 36711258112, 493805416448, 9186633203712, 134635599806464, 2648342619422720, 43443234834350080, 938422838970810368, 11378951438668791808, 224791017150689574912, 4129154423023897411584
Offset: 0
-
CoefficientList[Series[(QPochhammer[-1, 16*x]/2)^(1/4), {x, 0, 20}],
x] (* Vaclav Kotesovec, Apr 19 2018 *)
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+(16*x)^k)^(1/4)))
A303125
Expansion of Product_{n>=1} (1 + (25*x)^n)^(1/5).
Original entry on oeis.org
1, 5, 75, 4500, 43125, 2765000, 55871875, 1876671875, 25128437500, 1495793359375, 28953471875000, 871257974609375, 18280647500000000, 596362168603515625, 14502797130615234375, 519397373566650390625, 8604439235863037109375
Offset: 0
-
CoefficientList[Series[(QPochhammer[-1, 25*x]/2)^(1/5), {x, 0, 20}],
x] (* Vaclav Kotesovec, Apr 19 2018 *)
-
N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+(25*x)^k)^(1/5)))
A370739
a(n) = 5^(2*n) * [x^n] Product_{k>=1} (1 + 3*x^k)^(1/5).
Original entry on oeis.org
1, 15, -75, 35250, -1138125, 72645000, -3307996875, 244578890625, -15502648125000, 985908809765625, -63515254624218750, 4314500023927734375, -291905297026816406250, 19789483493484814453125, -1355414138248614990234375, 93666904586649390380859375, -6498800175020013123779296875
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[1+3*x^k, {k, 1, nmax}]^(1/5), {x, 0, nmax}], x] * 25^Range[0, nmax]
nmax = 20; CoefficientList[Series[Product[1+3*(25*x)^k, {k, 1, nmax}]^(1/5), {x, 0, nmax}], x]
Showing 1-9 of 9 results.
Comments