A298994
Expansion of Product_{n>=1} (1 + (4*x)^n)^(1/2).
Original entry on oeis.org
1, 2, 6, 52, 134, 956, 4124, 20008, 73158, 439660, 1874612, 8350808, 37583004, 169862616, 779948152, 3774085968, 15435601222, 69542934604, 329825707332, 1403190752632, 6313190864052, 29079505547912, 126937389732872, 552273916408368, 2477249228318748
Offset: 0
-
CoefficientList[Series[Sqrt[QPochhammer[-1, 4*x]/2], {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 18 2018 *)
A271236
G.f.: Product_{k>=1} 1/(1 - (9*x)^k)^(1/3).
Original entry on oeis.org
1, 3, 45, 450, 5805, 52326, 705591, 6190425, 77219325, 751178610, 8522919063, 80502824835, 975122402985, 8949951461925, 100088881882830, 1003346683458480, 10828622925516312, 104307212166072165, 1152197107898173875, 11048535008792967825, 119509353627934830327
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[1/(1 - (9*x)^k)^(1/3), {k, 1, nmax}], {x, 0, nmax}], x]
-
N=99; x='x+O('x^N); Vec(prod(k=1, N, 1/(1-(9*x)^k)^(1/3))) \\ Altug Alkan, Apr 20 2018
A298411
Coefficients of q^(-1/24)*eta(4q)^(1/2).
Original entry on oeis.org
1, -2, -10, -20, -90, 132, -836, 6040, 2310, 60180, 180308, 1662568, -2995620, 24401320, 44072120, -102437328, 19390406, 2649221300, -10584460060, 14475802440, -228570333836, -815899620616, 2088529753800, -5590702681520, -100828534100580, -172013432412024
Offset: 0
-
Series[Product[(1 - (4 q)^k)^(1/2), {k, 1, 100}], {q, 0, 100}]
-
q='q+O('q^99); Vec(eta(4*q)^(1/2)) \\ Altug Alkan, Apr 20 2018
A298993
Expansion of Product_{n>=1} 1/sqrt(1 + (4*x)^n).
Original entry on oeis.org
1, -2, -2, -36, 54, -476, 556, -6088, 35878, -156844, 444164, -1734648, 11948604, -35313048, 156354328, -864527760, 4733447686, -12692853452, 54065039380, -226098757912, 1278838329812, -5257771138376, 19455009120232, -76455773381360, 453306681446748
Offset: 0
-
CoefficientList[Series[Sqrt[2/QPochhammer[-1, 4*x]], {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 18 2018 *)
A303135
Expansion of Product_{n>=1} (1 - (16*x)^n)^(-1/4).
Original entry on oeis.org
1, 4, 104, 1760, 39520, 590720, 14285056, 205151232, 4596467200, 75375073280, 1504196046848, 23673049726976, 525315968712704, 7912159583600640, 158055039529779200, 2726833423421800448, 51889395654107463680, 840470097284214292480, 16765991910040314839040
Offset: 0
-
CoefficientList[Series[1/QPochhammer[16*x]^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2018 *)
A303136
Expansion of Product_{n>=1} (1 - (25*x)^n)^(-1/5).
Original entry on oeis.org
1, 5, 200, 5125, 177500, 3952500, 150715625, 3185187500, 112844843750, 2783033593750, 86330708203125, 2019237027343750, 72195817812500000, 1591910699609375000, 50158322275878906250, 1322261581989501953125, 39183430287559814453125, 946961406814801025390625
Offset: 0
-
CoefficientList[Series[1/QPochhammer[25*x]^(1/5), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2018 *)
CoefficientList[Series[Product[(1-(25x)^n)^(-1/5),{n,20}],{x,0,20}],x] (* Harvey P. Dale, Nov 04 2021 *)
A370735
a(n) = 5^(2*n) * [x^n] Product_{k>=1} 1/(1 - 3*x^k)^(1/5).
Original entry on oeis.org
1, 15, 1050, 52125, 3277500, 179801250, 11966690625, 738318187500, 49788716718750, 3314446448437500, 227432073022265625, 15631633385109375000, 1090877899335878906250, 76338563689129101562500, 5384934139819611328125000, 381204340327212964599609375, 27111589537137988341064453125
Offset: 0
-
nmax = 20; CoefficientList[Series[Product[1/(1-3*x^k), {k, 1, nmax}]^(1/5), {x, 0, nmax}], x] * 25^Range[0, nmax]
nmax = 20; CoefficientList[Series[Product[1/(1-3*(25*x)^k), {k, 1, nmax}]^(1/5), {x, 0, nmax}], x]
Showing 1-7 of 7 results.
Comments