A298994
Expansion of Product_{n>=1} (1 + (4*x)^n)^(1/2).
Original entry on oeis.org
1, 2, 6, 52, 134, 956, 4124, 20008, 73158, 439660, 1874612, 8350808, 37583004, 169862616, 779948152, 3774085968, 15435601222, 69542934604, 329825707332, 1403190752632, 6313190864052, 29079505547912, 126937389732872, 552273916408368, 2477249228318748
Offset: 0
-
CoefficientList[Series[Sqrt[QPochhammer[-1, 4*x]/2], {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 18 2018 *)
A271235
G.f. equals the square root of P(4*x), where P(x) is the g.f. of the partition numbers (A000041).
Original entry on oeis.org
1, 2, 14, 68, 406, 1820, 10892, 48008, 266214, 1248044, 6454116, 29642424, 156638076, 707729176, 3551518936, 16671232784, 81685862790, 375557689292, 1843995831412, 8437648295384, 40779718859796, 188104838512840, 891508943457064, 4091507664092016, 19457793452994012, 88760334081132280, 415942096027738728, 1905990594266105648, 8875964207106121784, 40416438507461834160
Offset: 0
G.f.: A(x) = 1 + 2*x + 14*x^2 + 68*x^3 + 406*x^4 + 1820*x^5 + 10892*x^6 + 48008*x^7 + 266214*x^8 + 1248044*x^9 + 6454116*x^10 +...
where A(x)^2 = P(4*x).
RELATED SERIES.
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + 101*x^13 + 135*x^14 +...+ A000041(n)*x^n +...
1/A(x)^6 = 1 - 12*x + 320*x^3 - 28672*x^6 + 9437184*x^10 - 11811160064*x^15 + 57174604644352*x^21 +...+ (-1)^n*(2*n+1)*(4*x)^(n*(n+1)/2) +...
-
nmax = 30; CoefficientList[Series[Product[1/Sqrt[1 - (4*x)^k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 02 2016 *)
-
{a(n) = polcoeff( prod(k=1,n, 1/sqrt(1 - (4*x)^k +x*O(x^n))),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n) = if( n<0, 0, polcoeff( sum( k=1, sqrtint(n+1), (4*x)^(k^2) / prod(j=1, k, 1 - (4*x)^j, 1 + x*O(x^n))^2, 1)^(1/2), n))};
for(n=0,30,print1(a(n),", "))
-
N=99; x='x+O('x^N); Vec(prod(k=1, N, 1/(1-(4*x)^k)^(1/2))) \\ Altug Alkan, Apr 20 2018
A303131
Expansion of Product_{n>=1} (1 + (16*x)^n)^(-1/4).
Original entry on oeis.org
1, -4, -24, -1248, 1632, -267136, -669440, -56925184, 597165568, -19934894080, 61831327744, -3209599664128, 47593545383936, -840449808072704, 8113679782510592, -350055154021040128, 5703847053344768000, -57129722970675609600, 704939718429511778304
Offset: 0
-
CoefficientList[Series[(2/QPochhammer[-1, 16*x])^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 20 2018 *)
A303132
Expansion of Product_{n>=1} (1 + (25*x)^n)^(-1/5).
Original entry on oeis.org
1, -5, -50, -3875, 2500, -2046250, -12409375, -1087687500, 13232343750, -907225000000, 1545669140625, -362705679687500, 6007095839843750, -224713698632812500, 2118331116210937500, -226812683210205078125, 4765872641563720703125
Offset: 0
-
CoefficientList[Series[(2/QPochhammer[-1, 25*x])^(1/5), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 20 2018 *)
A303130
Expansion of Product_{n>=1} (1 + (9*x)^n)^(-1/3).
Original entry on oeis.org
1, -3, -9, -288, 459, -19278, -1539, -1265301, 10734525, -147277926, 520204923, -7511358663, 88687160577, -668191863951, 5357547144702, -87542760890124, 967961569696722, -5115624735401361, 46065749188891275, -430898393089547667, 6203508335817169257
Offset: 0
-
CoefficientList[Series[(2/QPochhammer[-1, 9*x])^(1/3), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 20 2018 *)
-
N=99; x='x+O('x^N); Vec(prod(k=1, N, (1 + (9*x)^k)^(-1/3))) \\ Altug Alkan, Apr 20 2018
Showing 1-5 of 5 results.
Comments