cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A303074 Expansion of Product_{n>=1} (1 + (9*x)^n)^(1/3).

Original entry on oeis.org

1, 3, 18, 369, 1674, 31428, 266733, 3012714, 19924299, 319970007, 2688208641, 27248985549, 248061612240, 2597556114648, 25367004717831, 289880288735373, 2289952155529719, 23895509092285545, 252143223166599723, 2308267172943599733, 22389894059315522040
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 18 2018

Keywords

Comments

In general, for h>=1, if g.f. = Product_{k>=1} (1 + (h^2*x)^k)^(1/h), then a(n) ~ h^(2*n) * exp(Pi*sqrt(n/(3*h))) / (2^((3*h + 1)/(2*h)) * 3^(1/4) * h^(1/4) * n^(3/4)).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(QPochhammer[-1, 9*x]/2)^(1/3), {x, 0, 20}], x]

Formula

a(n) ~ 3^(2*n - 1/2) * exp(sqrt(n)*Pi/3) / (2^(5/3) * n^(3/4)).

A303307 Expansion of Product_{n>=1} ((1 + (2*x)^n)/(1 - (2*x)^n))^(1/2).

Original entry on oeis.org

1, 2, 6, 20, 54, 156, 444, 1192, 3174, 8620, 22516, 58392, 151996, 387352, 984888, 2507088, 6270854, 15659724, 39067588, 96454072, 237663444, 584266696, 1425921992, 3470869296, 8431325916, 20380759544, 49122457608, 118178637040, 283150466232, 676768288176
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[QPochhammer[-1, 2*x] / (2*QPochhammer[2*x])], {x, 0, 30}], x] (* Vaclav Kotesovec, Apr 21 2018 *)
  • Ruby
    def s(n)
      s = 0
      (1..n).each{|i| s += i if n % i == 0}
      s
    end
    def A303307(n)
      ary = [1]
      a = (0..n).map{|i| 2 ** (i - 1) * (s(2 * i) - s(i))}
      (1..n).each{|i| ary << (1..i).inject(0){|s, j| s + a[j] * ary[-j]} / i}
      ary
    end
    p A303307(100)

Formula

a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} 2^(k-1) * A054785(k) * a(n-k) for n > 0.
a(n) ~ 2^(n - 21/8) * exp(Pi*sqrt(n/2)) / n^(7/8). - Vaclav Kotesovec, Apr 21 2018

A271236 G.f.: Product_{k>=1} 1/(1 - (9*x)^k)^(1/3).

Original entry on oeis.org

1, 3, 45, 450, 5805, 52326, 705591, 6190425, 77219325, 751178610, 8522919063, 80502824835, 975122402985, 8949951461925, 100088881882830, 1003346683458480, 10828622925516312, 104307212166072165, 1152197107898173875, 11048535008792967825, 119509353627934830327
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 02 2016

Keywords

Comments

In general, for h>=1, if g.f. = Product_{k>=1} 1/(1-(h^2*x)^k)^(1/h), then a(n) ~ h^(2*n) * exp(Pi*sqrt(2*n/(3*h))) / (2^(5*h+3) * 3^(h+1) * h^(h+1) * n^(3*h+1))^(1/(4*h)).
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1/3, g(n) = 9^n. - Seiichi Manyama, Apr 20 2018

Crossrefs

Expansion of Product_{n>=1} (1 - ((b^2)*x)^n)^(-1/b): A000041 (b=1), A271235 (b=2), this sequence (b=3), A303135 (b=4), A303136 (b=5).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1 - (9*x)^k)^(1/3), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, 1/(1-(9*x)^k)^(1/3))) \\ Altug Alkan, Apr 20 2018

Formula

a(n) ~ 3^(2*n - 2/3) * exp(sqrt(2*n)*Pi/3) / (2^(3/2) * n^(5/6)).

A370752 a(n) = 3^n * [x^n] Product_{k>=1} ((1 + 3*x^k)/(1 - 3*x^k))^(1/3).

Original entry on oeis.org

1, 6, 36, 360, 1998, 18792, 121176, 1123632, 7537860, 72078174, 510702408, 4896308088, 35923749480, 345406994280, 2600934294816, 24985346997888, 191735328374478, 1838307293836560, 14317601666954364, 136953233511162840, 1079293961918593800, 10299943344889922832
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 29 2024

Keywords

Comments

In general, if d > 1, m >= 1 and g.f. = Product_{k>=1} ((1 + d*x^k)/(1 - d*x^k))^(1/m), then a(n) ~ QPochhammer(-1, 1/d)^(1/m) * d^n / (Gamma(1/m) * QPochhammer(1/d)^(1/m) * n^(1 - 1/m)).

Crossrefs

Cf. A303390 (d=3,m=1), A370751 (d=3,m=2), A370752 (d=3,m=3).
Cf. A261584 (d=2,m=1), A303346 (d=2,m=2), A370750 (d=2,m=3), A370749 (d=2,m=4).
Cf. A015128 (d=1,m=1), A303307 (d=1,m=2), A303342 (d=1,m=3).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + 3*x^k)/(1 - 3*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
    nmax = 30; CoefficientList[Series[Product[(1 + 3*(3*x)^k)/(1 - 3*(3*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + 3*(3*x)^k)/(1 - 3*(3*x)^k))^(1/3).
a(n) ~ QPochhammer(-1, 1/3)^(1/3) * 9^n / (Gamma(1/3) * QPochhammer(1/3)^(1/3) * n^(2/3)).
Showing 1-4 of 4 results.